| Step |
Hyp |
Ref |
Expression |
| 1 |
|
breq1 |
|
| 2 |
1
|
adantr |
|
| 3 |
|
eluzge2nn0 |
|
| 4 |
|
fmtnoodd |
|
| 5 |
3 4
|
syl |
|
| 6 |
5
|
adantl |
|
| 7 |
6
|
pm2.21d |
|
| 8 |
2 7
|
sylbid |
|
| 9 |
8
|
a1d |
|
| 10 |
9
|
ex |
|
| 11 |
10
|
3impd |
|
| 12 |
|
simpr1 |
|
| 13 |
|
neqne |
|
| 14 |
13
|
anim2i |
|
| 15 |
|
eldifsn |
|
| 16 |
14 15
|
sylibr |
|
| 17 |
16
|
ex |
|
| 18 |
17
|
3ad2ant2 |
|
| 19 |
18
|
impcom |
|
| 20 |
|
simpr3 |
|
| 21 |
|
fmtnoprmfac2lem1 |
|
| 22 |
12 19 20 21
|
syl3anc |
|
| 23 |
|
simpl |
|
| 24 |
|
2nn |
|
| 25 |
24
|
a1i |
|
| 26 |
|
oddprm |
|
| 27 |
16 26
|
syl |
|
| 28 |
27
|
nnnn0d |
|
| 29 |
25 28
|
nnexpcld |
|
| 30 |
29
|
nnzd |
|
| 31 |
23 30
|
jca |
|
| 32 |
31
|
ex |
|
| 33 |
32
|
3ad2ant2 |
|
| 34 |
33
|
impcom |
|
| 35 |
|
modprm1div |
|
| 36 |
34 35
|
syl |
|
| 37 |
|
prmnn |
|
| 38 |
37
|
adantr |
|
| 39 |
|
2z |
|
| 40 |
39
|
a1i |
|
| 41 |
13
|
necomd |
|
| 42 |
41
|
adantl |
|
| 43 |
|
2prm |
|
| 44 |
43
|
a1i |
|
| 45 |
44
|
anim2i |
|
| 46 |
45
|
ancomd |
|
| 47 |
|
prmrp |
|
| 48 |
46 47
|
syl |
|
| 49 |
42 48
|
mpbird |
|
| 50 |
38 40 49
|
3jca |
|
| 51 |
50 28
|
jca |
|
| 52 |
51
|
ex |
|
| 53 |
52
|
3ad2ant2 |
|
| 54 |
53
|
impcom |
|
| 55 |
|
odzdvds |
|
| 56 |
54 55
|
syl |
|
| 57 |
|
eluz2nn |
|
| 58 |
57
|
3ad2ant1 |
|
| 59 |
58
|
adantl |
|
| 60 |
|
fmtnoprmfac1lem |
|
| 61 |
59 19 20 60
|
syl3anc |
|
| 62 |
|
breq1 |
|
| 63 |
62
|
adantl |
|
| 64 |
24
|
a1i |
|
| 65 |
|
peano2nn |
|
| 66 |
57 65
|
syl |
|
| 67 |
66
|
nnnn0d |
|
| 68 |
64 67
|
nnexpcld |
|
| 69 |
|
nndivides |
|
| 70 |
68 27 69
|
syl2an |
|
| 71 |
|
eqcom |
|
| 72 |
71
|
a1i |
|
| 73 |
37
|
nncnd |
|
| 74 |
|
peano2cnm |
|
| 75 |
73 74
|
syl |
|
| 76 |
75
|
adantl |
|
| 77 |
76
|
adantr |
|
| 78 |
|
simpr |
|
| 79 |
68
|
ad2antrr |
|
| 80 |
78 79
|
nnmulcld |
|
| 81 |
80
|
nncnd |
|
| 82 |
|
2cnne0 |
|
| 83 |
82
|
a1i |
|
| 84 |
|
divmul3 |
|
| 85 |
77 81 83 84
|
syl3anc |
|
| 86 |
|
nncn |
|
| 87 |
86
|
adantl |
|
| 88 |
68
|
nncnd |
|
| 89 |
88
|
ad2antrr |
|
| 90 |
|
2cnd |
|
| 91 |
87 89 90
|
mulassd |
|
| 92 |
|
2cnd |
|
| 93 |
65
|
nnnn0d |
|
| 94 |
92 93
|
expp1d |
|
| 95 |
|
nncn |
|
| 96 |
|
add1p1 |
|
| 97 |
95 96
|
syl |
|
| 98 |
97
|
oveq2d |
|
| 99 |
94 98
|
eqtr3d |
|
| 100 |
57 99
|
syl |
|
| 101 |
100
|
ad2antrr |
|
| 102 |
101
|
oveq2d |
|
| 103 |
91 102
|
eqtrd |
|
| 104 |
103
|
eqeq2d |
|
| 105 |
73
|
adantl |
|
| 106 |
105
|
adantr |
|
| 107 |
|
1cnd |
|
| 108 |
|
id |
|
| 109 |
24
|
a1i |
|
| 110 |
108 109
|
nnaddcld |
|
| 111 |
110
|
nnnn0d |
|
| 112 |
57 111
|
syl |
|
| 113 |
64 112
|
nnexpcld |
|
| 114 |
113
|
nncnd |
|
| 115 |
114
|
ad2antrr |
|
| 116 |
87 115
|
mulcld |
|
| 117 |
106 107 116
|
subadd2d |
|
| 118 |
|
eqcom |
|
| 119 |
118
|
a1i |
|
| 120 |
104 117 119
|
3bitrd |
|
| 121 |
72 85 120
|
3bitrd |
|
| 122 |
121
|
rexbidva |
|
| 123 |
122
|
biimpd |
|
| 124 |
123
|
adantrr |
|
| 125 |
70 124
|
sylbid |
|
| 126 |
125
|
expr |
|
| 127 |
126
|
3adant3 |
|
| 128 |
127
|
impcom |
|
| 129 |
128
|
adantr |
|
| 130 |
63 129
|
sylbid |
|
| 131 |
130
|
ex |
|
| 132 |
61 131
|
mpd |
|
| 133 |
56 132
|
sylbid |
|
| 134 |
36 133
|
sylbid |
|
| 135 |
22 134
|
mpd |
|
| 136 |
135
|
ex |
|
| 137 |
11 136
|
pm2.61i |
|