Step |
Hyp |
Ref |
Expression |
1 |
|
breq1 |
β’ ( π₯ = 1 β ( π₯ β₯ ( FermatNo β π ) β 1 β₯ ( FermatNo β π ) ) ) |
2 |
1
|
anbi2d |
β’ ( π₯ = 1 β ( ( π β ( β€β₯ β 2 ) β§ π₯ β₯ ( FermatNo β π ) ) β ( π β ( β€β₯ β 2 ) β§ 1 β₯ ( FermatNo β π ) ) ) ) |
3 |
|
eqeq1 |
β’ ( π₯ = 1 β ( π₯ = ( ( π Β· ( 2 β ( π + 2 ) ) ) + 1 ) β 1 = ( ( π Β· ( 2 β ( π + 2 ) ) ) + 1 ) ) ) |
4 |
3
|
rexbidv |
β’ ( π₯ = 1 β ( β π β β0 π₯ = ( ( π Β· ( 2 β ( π + 2 ) ) ) + 1 ) β β π β β0 1 = ( ( π Β· ( 2 β ( π + 2 ) ) ) + 1 ) ) ) |
5 |
2 4
|
imbi12d |
β’ ( π₯ = 1 β ( ( ( π β ( β€β₯ β 2 ) β§ π₯ β₯ ( FermatNo β π ) ) β β π β β0 π₯ = ( ( π Β· ( 2 β ( π + 2 ) ) ) + 1 ) ) β ( ( π β ( β€β₯ β 2 ) β§ 1 β₯ ( FermatNo β π ) ) β β π β β0 1 = ( ( π Β· ( 2 β ( π + 2 ) ) ) + 1 ) ) ) ) |
6 |
|
breq1 |
β’ ( π₯ = π¦ β ( π₯ β₯ ( FermatNo β π ) β π¦ β₯ ( FermatNo β π ) ) ) |
7 |
6
|
anbi2d |
β’ ( π₯ = π¦ β ( ( π β ( β€β₯ β 2 ) β§ π₯ β₯ ( FermatNo β π ) ) β ( π β ( β€β₯ β 2 ) β§ π¦ β₯ ( FermatNo β π ) ) ) ) |
8 |
|
eqeq1 |
β’ ( π₯ = π¦ β ( π₯ = ( ( π Β· ( 2 β ( π + 2 ) ) ) + 1 ) β π¦ = ( ( π Β· ( 2 β ( π + 2 ) ) ) + 1 ) ) ) |
9 |
8
|
rexbidv |
β’ ( π₯ = π¦ β ( β π β β0 π₯ = ( ( π Β· ( 2 β ( π + 2 ) ) ) + 1 ) β β π β β0 π¦ = ( ( π Β· ( 2 β ( π + 2 ) ) ) + 1 ) ) ) |
10 |
7 9
|
imbi12d |
β’ ( π₯ = π¦ β ( ( ( π β ( β€β₯ β 2 ) β§ π₯ β₯ ( FermatNo β π ) ) β β π β β0 π₯ = ( ( π Β· ( 2 β ( π + 2 ) ) ) + 1 ) ) β ( ( π β ( β€β₯ β 2 ) β§ π¦ β₯ ( FermatNo β π ) ) β β π β β0 π¦ = ( ( π Β· ( 2 β ( π + 2 ) ) ) + 1 ) ) ) ) |
11 |
|
breq1 |
β’ ( π₯ = π§ β ( π₯ β₯ ( FermatNo β π ) β π§ β₯ ( FermatNo β π ) ) ) |
12 |
11
|
anbi2d |
β’ ( π₯ = π§ β ( ( π β ( β€β₯ β 2 ) β§ π₯ β₯ ( FermatNo β π ) ) β ( π β ( β€β₯ β 2 ) β§ π§ β₯ ( FermatNo β π ) ) ) ) |
13 |
|
eqeq1 |
β’ ( π₯ = π§ β ( π₯ = ( ( π Β· ( 2 β ( π + 2 ) ) ) + 1 ) β π§ = ( ( π Β· ( 2 β ( π + 2 ) ) ) + 1 ) ) ) |
14 |
13
|
rexbidv |
β’ ( π₯ = π§ β ( β π β β0 π₯ = ( ( π Β· ( 2 β ( π + 2 ) ) ) + 1 ) β β π β β0 π§ = ( ( π Β· ( 2 β ( π + 2 ) ) ) + 1 ) ) ) |
15 |
12 14
|
imbi12d |
β’ ( π₯ = π§ β ( ( ( π β ( β€β₯ β 2 ) β§ π₯ β₯ ( FermatNo β π ) ) β β π β β0 π₯ = ( ( π Β· ( 2 β ( π + 2 ) ) ) + 1 ) ) β ( ( π β ( β€β₯ β 2 ) β§ π§ β₯ ( FermatNo β π ) ) β β π β β0 π§ = ( ( π Β· ( 2 β ( π + 2 ) ) ) + 1 ) ) ) ) |
16 |
|
breq1 |
β’ ( π₯ = ( π¦ Β· π§ ) β ( π₯ β₯ ( FermatNo β π ) β ( π¦ Β· π§ ) β₯ ( FermatNo β π ) ) ) |
17 |
16
|
anbi2d |
β’ ( π₯ = ( π¦ Β· π§ ) β ( ( π β ( β€β₯ β 2 ) β§ π₯ β₯ ( FermatNo β π ) ) β ( π β ( β€β₯ β 2 ) β§ ( π¦ Β· π§ ) β₯ ( FermatNo β π ) ) ) ) |
18 |
|
eqeq1 |
β’ ( π₯ = ( π¦ Β· π§ ) β ( π₯ = ( ( π Β· ( 2 β ( π + 2 ) ) ) + 1 ) β ( π¦ Β· π§ ) = ( ( π Β· ( 2 β ( π + 2 ) ) ) + 1 ) ) ) |
19 |
18
|
rexbidv |
β’ ( π₯ = ( π¦ Β· π§ ) β ( β π β β0 π₯ = ( ( π Β· ( 2 β ( π + 2 ) ) ) + 1 ) β β π β β0 ( π¦ Β· π§ ) = ( ( π Β· ( 2 β ( π + 2 ) ) ) + 1 ) ) ) |
20 |
17 19
|
imbi12d |
β’ ( π₯ = ( π¦ Β· π§ ) β ( ( ( π β ( β€β₯ β 2 ) β§ π₯ β₯ ( FermatNo β π ) ) β β π β β0 π₯ = ( ( π Β· ( 2 β ( π + 2 ) ) ) + 1 ) ) β ( ( π β ( β€β₯ β 2 ) β§ ( π¦ Β· π§ ) β₯ ( FermatNo β π ) ) β β π β β0 ( π¦ Β· π§ ) = ( ( π Β· ( 2 β ( π + 2 ) ) ) + 1 ) ) ) ) |
21 |
|
breq1 |
β’ ( π₯ = π β ( π₯ β₯ ( FermatNo β π ) β π β₯ ( FermatNo β π ) ) ) |
22 |
21
|
anbi2d |
β’ ( π₯ = π β ( ( π β ( β€β₯ β 2 ) β§ π₯ β₯ ( FermatNo β π ) ) β ( π β ( β€β₯ β 2 ) β§ π β₯ ( FermatNo β π ) ) ) ) |
23 |
|
eqeq1 |
β’ ( π₯ = π β ( π₯ = ( ( π Β· ( 2 β ( π + 2 ) ) ) + 1 ) β π = ( ( π Β· ( 2 β ( π + 2 ) ) ) + 1 ) ) ) |
24 |
23
|
rexbidv |
β’ ( π₯ = π β ( β π β β0 π₯ = ( ( π Β· ( 2 β ( π + 2 ) ) ) + 1 ) β β π β β0 π = ( ( π Β· ( 2 β ( π + 2 ) ) ) + 1 ) ) ) |
25 |
22 24
|
imbi12d |
β’ ( π₯ = π β ( ( ( π β ( β€β₯ β 2 ) β§ π₯ β₯ ( FermatNo β π ) ) β β π β β0 π₯ = ( ( π Β· ( 2 β ( π + 2 ) ) ) + 1 ) ) β ( ( π β ( β€β₯ β 2 ) β§ π β₯ ( FermatNo β π ) ) β β π β β0 π = ( ( π Β· ( 2 β ( π + 2 ) ) ) + 1 ) ) ) ) |
26 |
|
0nn0 |
β’ 0 β β0 |
27 |
26
|
a1i |
β’ ( π β ( β€β₯ β 2 ) β 0 β β0 ) |
28 |
|
oveq1 |
β’ ( π = 0 β ( π Β· ( 2 β ( π + 2 ) ) ) = ( 0 Β· ( 2 β ( π + 2 ) ) ) ) |
29 |
28
|
oveq1d |
β’ ( π = 0 β ( ( π Β· ( 2 β ( π + 2 ) ) ) + 1 ) = ( ( 0 Β· ( 2 β ( π + 2 ) ) ) + 1 ) ) |
30 |
29
|
eqeq2d |
β’ ( π = 0 β ( 1 = ( ( π Β· ( 2 β ( π + 2 ) ) ) + 1 ) β 1 = ( ( 0 Β· ( 2 β ( π + 2 ) ) ) + 1 ) ) ) |
31 |
30
|
adantl |
β’ ( ( π β ( β€β₯ β 2 ) β§ π = 0 ) β ( 1 = ( ( π Β· ( 2 β ( π + 2 ) ) ) + 1 ) β 1 = ( ( 0 Β· ( 2 β ( π + 2 ) ) ) + 1 ) ) ) |
32 |
|
2nn0 |
β’ 2 β β0 |
33 |
32
|
a1i |
β’ ( π β ( β€β₯ β 2 ) β 2 β β0 ) |
34 |
|
eluzge2nn0 |
β’ ( π β ( β€β₯ β 2 ) β π β β0 ) |
35 |
34 33
|
nn0addcld |
β’ ( π β ( β€β₯ β 2 ) β ( π + 2 ) β β0 ) |
36 |
33 35
|
nn0expcld |
β’ ( π β ( β€β₯ β 2 ) β ( 2 β ( π + 2 ) ) β β0 ) |
37 |
36
|
nn0cnd |
β’ ( π β ( β€β₯ β 2 ) β ( 2 β ( π + 2 ) ) β β ) |
38 |
37
|
mul02d |
β’ ( π β ( β€β₯ β 2 ) β ( 0 Β· ( 2 β ( π + 2 ) ) ) = 0 ) |
39 |
38
|
oveq1d |
β’ ( π β ( β€β₯ β 2 ) β ( ( 0 Β· ( 2 β ( π + 2 ) ) ) + 1 ) = ( 0 + 1 ) ) |
40 |
|
0p1e1 |
β’ ( 0 + 1 ) = 1 |
41 |
39 40
|
eqtr2di |
β’ ( π β ( β€β₯ β 2 ) β 1 = ( ( 0 Β· ( 2 β ( π + 2 ) ) ) + 1 ) ) |
42 |
27 31 41
|
rspcedvd |
β’ ( π β ( β€β₯ β 2 ) β β π β β0 1 = ( ( π Β· ( 2 β ( π + 2 ) ) ) + 1 ) ) |
43 |
42
|
adantr |
β’ ( ( π β ( β€β₯ β 2 ) β§ 1 β₯ ( FermatNo β π ) ) β β π β β0 1 = ( ( π Β· ( 2 β ( π + 2 ) ) ) + 1 ) ) |
44 |
|
simpl |
β’ ( ( π β ( β€β₯ β 2 ) β§ π₯ β₯ ( FermatNo β π ) ) β π β ( β€β₯ β 2 ) ) |
45 |
44
|
adantl |
β’ ( ( π₯ β β β§ ( π β ( β€β₯ β 2 ) β§ π₯ β₯ ( FermatNo β π ) ) ) β π β ( β€β₯ β 2 ) ) |
46 |
|
simpl |
β’ ( ( π₯ β β β§ ( π β ( β€β₯ β 2 ) β§ π₯ β₯ ( FermatNo β π ) ) ) β π₯ β β ) |
47 |
|
simprr |
β’ ( ( π₯ β β β§ ( π β ( β€β₯ β 2 ) β§ π₯ β₯ ( FermatNo β π ) ) ) β π₯ β₯ ( FermatNo β π ) ) |
48 |
|
nnssnn0 |
β’ β β β0 |
49 |
|
fmtnoprmfac2 |
β’ ( ( π β ( β€β₯ β 2 ) β§ π₯ β β β§ π₯ β₯ ( FermatNo β π ) ) β β π β β π₯ = ( ( π Β· ( 2 β ( π + 2 ) ) ) + 1 ) ) |
50 |
|
ssrexv |
β’ ( β β β0 β ( β π β β π₯ = ( ( π Β· ( 2 β ( π + 2 ) ) ) + 1 ) β β π β β0 π₯ = ( ( π Β· ( 2 β ( π + 2 ) ) ) + 1 ) ) ) |
51 |
48 49 50
|
mpsyl |
β’ ( ( π β ( β€β₯ β 2 ) β§ π₯ β β β§ π₯ β₯ ( FermatNo β π ) ) β β π β β0 π₯ = ( ( π Β· ( 2 β ( π + 2 ) ) ) + 1 ) ) |
52 |
45 46 47 51
|
syl3anc |
β’ ( ( π₯ β β β§ ( π β ( β€β₯ β 2 ) β§ π₯ β₯ ( FermatNo β π ) ) ) β β π β β0 π₯ = ( ( π Β· ( 2 β ( π + 2 ) ) ) + 1 ) ) |
53 |
52
|
ex |
β’ ( π₯ β β β ( ( π β ( β€β₯ β 2 ) β§ π₯ β₯ ( FermatNo β π ) ) β β π β β0 π₯ = ( ( π Β· ( 2 β ( π + 2 ) ) ) + 1 ) ) ) |
54 |
|
fmtnofac2lem |
β’ ( ( π¦ β ( β€β₯ β 2 ) β§ π§ β ( β€β₯ β 2 ) ) β ( ( ( ( π β ( β€β₯ β 2 ) β§ π¦ β₯ ( FermatNo β π ) ) β β π β β0 π¦ = ( ( π Β· ( 2 β ( π + 2 ) ) ) + 1 ) ) β§ ( ( π β ( β€β₯ β 2 ) β§ π§ β₯ ( FermatNo β π ) ) β β π β β0 π§ = ( ( π Β· ( 2 β ( π + 2 ) ) ) + 1 ) ) ) β ( ( π β ( β€β₯ β 2 ) β§ ( π¦ Β· π§ ) β₯ ( FermatNo β π ) ) β β π β β0 ( π¦ Β· π§ ) = ( ( π Β· ( 2 β ( π + 2 ) ) ) + 1 ) ) ) ) |
55 |
5 10 15 20 25 43 53 54
|
prmind |
β’ ( π β β β ( ( π β ( β€β₯ β 2 ) β§ π β₯ ( FermatNo β π ) ) β β π β β0 π = ( ( π Β· ( 2 β ( π + 2 ) ) ) + 1 ) ) ) |
56 |
55
|
expd |
β’ ( π β β β ( π β ( β€β₯ β 2 ) β ( π β₯ ( FermatNo β π ) β β π β β0 π = ( ( π Β· ( 2 β ( π + 2 ) ) ) + 1 ) ) ) ) |
57 |
56
|
3imp21 |
β’ ( ( π β ( β€β₯ β 2 ) β§ π β β β§ π β₯ ( FermatNo β π ) ) β β π β β0 π = ( ( π Β· ( 2 β ( π + 2 ) ) ) + 1 ) ) |