| Step | Hyp | Ref | Expression | 
						
							| 1 |  | breq1 | ⊢ ( 𝑥  =  1  →  ( 𝑥  ∥  ( FermatNo ‘ 𝑁 )  ↔  1  ∥  ( FermatNo ‘ 𝑁 ) ) ) | 
						
							| 2 | 1 | anbi2d | ⊢ ( 𝑥  =  1  →  ( ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑥  ∥  ( FermatNo ‘ 𝑁 ) )  ↔  ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  ∧  1  ∥  ( FermatNo ‘ 𝑁 ) ) ) ) | 
						
							| 3 |  | eqeq1 | ⊢ ( 𝑥  =  1  →  ( 𝑥  =  ( ( 𝑘  ·  ( 2 ↑ ( 𝑁  +  2 ) ) )  +  1 )  ↔  1  =  ( ( 𝑘  ·  ( 2 ↑ ( 𝑁  +  2 ) ) )  +  1 ) ) ) | 
						
							| 4 | 3 | rexbidv | ⊢ ( 𝑥  =  1  →  ( ∃ 𝑘  ∈  ℕ0 𝑥  =  ( ( 𝑘  ·  ( 2 ↑ ( 𝑁  +  2 ) ) )  +  1 )  ↔  ∃ 𝑘  ∈  ℕ0 1  =  ( ( 𝑘  ·  ( 2 ↑ ( 𝑁  +  2 ) ) )  +  1 ) ) ) | 
						
							| 5 | 2 4 | imbi12d | ⊢ ( 𝑥  =  1  →  ( ( ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑥  ∥  ( FermatNo ‘ 𝑁 ) )  →  ∃ 𝑘  ∈  ℕ0 𝑥  =  ( ( 𝑘  ·  ( 2 ↑ ( 𝑁  +  2 ) ) )  +  1 ) )  ↔  ( ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  ∧  1  ∥  ( FermatNo ‘ 𝑁 ) )  →  ∃ 𝑘  ∈  ℕ0 1  =  ( ( 𝑘  ·  ( 2 ↑ ( 𝑁  +  2 ) ) )  +  1 ) ) ) ) | 
						
							| 6 |  | breq1 | ⊢ ( 𝑥  =  𝑦  →  ( 𝑥  ∥  ( FermatNo ‘ 𝑁 )  ↔  𝑦  ∥  ( FermatNo ‘ 𝑁 ) ) ) | 
						
							| 7 | 6 | anbi2d | ⊢ ( 𝑥  =  𝑦  →  ( ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑥  ∥  ( FermatNo ‘ 𝑁 ) )  ↔  ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑦  ∥  ( FermatNo ‘ 𝑁 ) ) ) ) | 
						
							| 8 |  | eqeq1 | ⊢ ( 𝑥  =  𝑦  →  ( 𝑥  =  ( ( 𝑘  ·  ( 2 ↑ ( 𝑁  +  2 ) ) )  +  1 )  ↔  𝑦  =  ( ( 𝑘  ·  ( 2 ↑ ( 𝑁  +  2 ) ) )  +  1 ) ) ) | 
						
							| 9 | 8 | rexbidv | ⊢ ( 𝑥  =  𝑦  →  ( ∃ 𝑘  ∈  ℕ0 𝑥  =  ( ( 𝑘  ·  ( 2 ↑ ( 𝑁  +  2 ) ) )  +  1 )  ↔  ∃ 𝑘  ∈  ℕ0 𝑦  =  ( ( 𝑘  ·  ( 2 ↑ ( 𝑁  +  2 ) ) )  +  1 ) ) ) | 
						
							| 10 | 7 9 | imbi12d | ⊢ ( 𝑥  =  𝑦  →  ( ( ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑥  ∥  ( FermatNo ‘ 𝑁 ) )  →  ∃ 𝑘  ∈  ℕ0 𝑥  =  ( ( 𝑘  ·  ( 2 ↑ ( 𝑁  +  2 ) ) )  +  1 ) )  ↔  ( ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑦  ∥  ( FermatNo ‘ 𝑁 ) )  →  ∃ 𝑘  ∈  ℕ0 𝑦  =  ( ( 𝑘  ·  ( 2 ↑ ( 𝑁  +  2 ) ) )  +  1 ) ) ) ) | 
						
							| 11 |  | breq1 | ⊢ ( 𝑥  =  𝑧  →  ( 𝑥  ∥  ( FermatNo ‘ 𝑁 )  ↔  𝑧  ∥  ( FermatNo ‘ 𝑁 ) ) ) | 
						
							| 12 | 11 | anbi2d | ⊢ ( 𝑥  =  𝑧  →  ( ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑥  ∥  ( FermatNo ‘ 𝑁 ) )  ↔  ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑧  ∥  ( FermatNo ‘ 𝑁 ) ) ) ) | 
						
							| 13 |  | eqeq1 | ⊢ ( 𝑥  =  𝑧  →  ( 𝑥  =  ( ( 𝑘  ·  ( 2 ↑ ( 𝑁  +  2 ) ) )  +  1 )  ↔  𝑧  =  ( ( 𝑘  ·  ( 2 ↑ ( 𝑁  +  2 ) ) )  +  1 ) ) ) | 
						
							| 14 | 13 | rexbidv | ⊢ ( 𝑥  =  𝑧  →  ( ∃ 𝑘  ∈  ℕ0 𝑥  =  ( ( 𝑘  ·  ( 2 ↑ ( 𝑁  +  2 ) ) )  +  1 )  ↔  ∃ 𝑘  ∈  ℕ0 𝑧  =  ( ( 𝑘  ·  ( 2 ↑ ( 𝑁  +  2 ) ) )  +  1 ) ) ) | 
						
							| 15 | 12 14 | imbi12d | ⊢ ( 𝑥  =  𝑧  →  ( ( ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑥  ∥  ( FermatNo ‘ 𝑁 ) )  →  ∃ 𝑘  ∈  ℕ0 𝑥  =  ( ( 𝑘  ·  ( 2 ↑ ( 𝑁  +  2 ) ) )  +  1 ) )  ↔  ( ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑧  ∥  ( FermatNo ‘ 𝑁 ) )  →  ∃ 𝑘  ∈  ℕ0 𝑧  =  ( ( 𝑘  ·  ( 2 ↑ ( 𝑁  +  2 ) ) )  +  1 ) ) ) ) | 
						
							| 16 |  | breq1 | ⊢ ( 𝑥  =  ( 𝑦  ·  𝑧 )  →  ( 𝑥  ∥  ( FermatNo ‘ 𝑁 )  ↔  ( 𝑦  ·  𝑧 )  ∥  ( FermatNo ‘ 𝑁 ) ) ) | 
						
							| 17 | 16 | anbi2d | ⊢ ( 𝑥  =  ( 𝑦  ·  𝑧 )  →  ( ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑥  ∥  ( FermatNo ‘ 𝑁 ) )  ↔  ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑦  ·  𝑧 )  ∥  ( FermatNo ‘ 𝑁 ) ) ) ) | 
						
							| 18 |  | eqeq1 | ⊢ ( 𝑥  =  ( 𝑦  ·  𝑧 )  →  ( 𝑥  =  ( ( 𝑘  ·  ( 2 ↑ ( 𝑁  +  2 ) ) )  +  1 )  ↔  ( 𝑦  ·  𝑧 )  =  ( ( 𝑘  ·  ( 2 ↑ ( 𝑁  +  2 ) ) )  +  1 ) ) ) | 
						
							| 19 | 18 | rexbidv | ⊢ ( 𝑥  =  ( 𝑦  ·  𝑧 )  →  ( ∃ 𝑘  ∈  ℕ0 𝑥  =  ( ( 𝑘  ·  ( 2 ↑ ( 𝑁  +  2 ) ) )  +  1 )  ↔  ∃ 𝑘  ∈  ℕ0 ( 𝑦  ·  𝑧 )  =  ( ( 𝑘  ·  ( 2 ↑ ( 𝑁  +  2 ) ) )  +  1 ) ) ) | 
						
							| 20 | 17 19 | imbi12d | ⊢ ( 𝑥  =  ( 𝑦  ·  𝑧 )  →  ( ( ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑥  ∥  ( FermatNo ‘ 𝑁 ) )  →  ∃ 𝑘  ∈  ℕ0 𝑥  =  ( ( 𝑘  ·  ( 2 ↑ ( 𝑁  +  2 ) ) )  +  1 ) )  ↔  ( ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑦  ·  𝑧 )  ∥  ( FermatNo ‘ 𝑁 ) )  →  ∃ 𝑘  ∈  ℕ0 ( 𝑦  ·  𝑧 )  =  ( ( 𝑘  ·  ( 2 ↑ ( 𝑁  +  2 ) ) )  +  1 ) ) ) ) | 
						
							| 21 |  | breq1 | ⊢ ( 𝑥  =  𝑀  →  ( 𝑥  ∥  ( FermatNo ‘ 𝑁 )  ↔  𝑀  ∥  ( FermatNo ‘ 𝑁 ) ) ) | 
						
							| 22 | 21 | anbi2d | ⊢ ( 𝑥  =  𝑀  →  ( ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑥  ∥  ( FermatNo ‘ 𝑁 ) )  ↔  ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑀  ∥  ( FermatNo ‘ 𝑁 ) ) ) ) | 
						
							| 23 |  | eqeq1 | ⊢ ( 𝑥  =  𝑀  →  ( 𝑥  =  ( ( 𝑘  ·  ( 2 ↑ ( 𝑁  +  2 ) ) )  +  1 )  ↔  𝑀  =  ( ( 𝑘  ·  ( 2 ↑ ( 𝑁  +  2 ) ) )  +  1 ) ) ) | 
						
							| 24 | 23 | rexbidv | ⊢ ( 𝑥  =  𝑀  →  ( ∃ 𝑘  ∈  ℕ0 𝑥  =  ( ( 𝑘  ·  ( 2 ↑ ( 𝑁  +  2 ) ) )  +  1 )  ↔  ∃ 𝑘  ∈  ℕ0 𝑀  =  ( ( 𝑘  ·  ( 2 ↑ ( 𝑁  +  2 ) ) )  +  1 ) ) ) | 
						
							| 25 | 22 24 | imbi12d | ⊢ ( 𝑥  =  𝑀  →  ( ( ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑥  ∥  ( FermatNo ‘ 𝑁 ) )  →  ∃ 𝑘  ∈  ℕ0 𝑥  =  ( ( 𝑘  ·  ( 2 ↑ ( 𝑁  +  2 ) ) )  +  1 ) )  ↔  ( ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑀  ∥  ( FermatNo ‘ 𝑁 ) )  →  ∃ 𝑘  ∈  ℕ0 𝑀  =  ( ( 𝑘  ·  ( 2 ↑ ( 𝑁  +  2 ) ) )  +  1 ) ) ) ) | 
						
							| 26 |  | 0nn0 | ⊢ 0  ∈  ℕ0 | 
						
							| 27 | 26 | a1i | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  →  0  ∈  ℕ0 ) | 
						
							| 28 |  | oveq1 | ⊢ ( 𝑘  =  0  →  ( 𝑘  ·  ( 2 ↑ ( 𝑁  +  2 ) ) )  =  ( 0  ·  ( 2 ↑ ( 𝑁  +  2 ) ) ) ) | 
						
							| 29 | 28 | oveq1d | ⊢ ( 𝑘  =  0  →  ( ( 𝑘  ·  ( 2 ↑ ( 𝑁  +  2 ) ) )  +  1 )  =  ( ( 0  ·  ( 2 ↑ ( 𝑁  +  2 ) ) )  +  1 ) ) | 
						
							| 30 | 29 | eqeq2d | ⊢ ( 𝑘  =  0  →  ( 1  =  ( ( 𝑘  ·  ( 2 ↑ ( 𝑁  +  2 ) ) )  +  1 )  ↔  1  =  ( ( 0  ·  ( 2 ↑ ( 𝑁  +  2 ) ) )  +  1 ) ) ) | 
						
							| 31 | 30 | adantl | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑘  =  0 )  →  ( 1  =  ( ( 𝑘  ·  ( 2 ↑ ( 𝑁  +  2 ) ) )  +  1 )  ↔  1  =  ( ( 0  ·  ( 2 ↑ ( 𝑁  +  2 ) ) )  +  1 ) ) ) | 
						
							| 32 |  | 2nn0 | ⊢ 2  ∈  ℕ0 | 
						
							| 33 | 32 | a1i | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  →  2  ∈  ℕ0 ) | 
						
							| 34 |  | eluzge2nn0 | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  →  𝑁  ∈  ℕ0 ) | 
						
							| 35 | 34 33 | nn0addcld | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  →  ( 𝑁  +  2 )  ∈  ℕ0 ) | 
						
							| 36 | 33 35 | nn0expcld | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  →  ( 2 ↑ ( 𝑁  +  2 ) )  ∈  ℕ0 ) | 
						
							| 37 | 36 | nn0cnd | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  →  ( 2 ↑ ( 𝑁  +  2 ) )  ∈  ℂ ) | 
						
							| 38 | 37 | mul02d | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  →  ( 0  ·  ( 2 ↑ ( 𝑁  +  2 ) ) )  =  0 ) | 
						
							| 39 | 38 | oveq1d | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  →  ( ( 0  ·  ( 2 ↑ ( 𝑁  +  2 ) ) )  +  1 )  =  ( 0  +  1 ) ) | 
						
							| 40 |  | 0p1e1 | ⊢ ( 0  +  1 )  =  1 | 
						
							| 41 | 39 40 | eqtr2di | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  →  1  =  ( ( 0  ·  ( 2 ↑ ( 𝑁  +  2 ) ) )  +  1 ) ) | 
						
							| 42 | 27 31 41 | rspcedvd | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  →  ∃ 𝑘  ∈  ℕ0 1  =  ( ( 𝑘  ·  ( 2 ↑ ( 𝑁  +  2 ) ) )  +  1 ) ) | 
						
							| 43 | 42 | adantr | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  ∧  1  ∥  ( FermatNo ‘ 𝑁 ) )  →  ∃ 𝑘  ∈  ℕ0 1  =  ( ( 𝑘  ·  ( 2 ↑ ( 𝑁  +  2 ) ) )  +  1 ) ) | 
						
							| 44 |  | simpl | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑥  ∥  ( FermatNo ‘ 𝑁 ) )  →  𝑁  ∈  ( ℤ≥ ‘ 2 ) ) | 
						
							| 45 | 44 | adantl | ⊢ ( ( 𝑥  ∈  ℙ  ∧  ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑥  ∥  ( FermatNo ‘ 𝑁 ) ) )  →  𝑁  ∈  ( ℤ≥ ‘ 2 ) ) | 
						
							| 46 |  | simpl | ⊢ ( ( 𝑥  ∈  ℙ  ∧  ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑥  ∥  ( FermatNo ‘ 𝑁 ) ) )  →  𝑥  ∈  ℙ ) | 
						
							| 47 |  | simprr | ⊢ ( ( 𝑥  ∈  ℙ  ∧  ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑥  ∥  ( FermatNo ‘ 𝑁 ) ) )  →  𝑥  ∥  ( FermatNo ‘ 𝑁 ) ) | 
						
							| 48 |  | nnssnn0 | ⊢ ℕ  ⊆  ℕ0 | 
						
							| 49 |  | fmtnoprmfac2 | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑥  ∈  ℙ  ∧  𝑥  ∥  ( FermatNo ‘ 𝑁 ) )  →  ∃ 𝑘  ∈  ℕ 𝑥  =  ( ( 𝑘  ·  ( 2 ↑ ( 𝑁  +  2 ) ) )  +  1 ) ) | 
						
							| 50 |  | ssrexv | ⊢ ( ℕ  ⊆  ℕ0  →  ( ∃ 𝑘  ∈  ℕ 𝑥  =  ( ( 𝑘  ·  ( 2 ↑ ( 𝑁  +  2 ) ) )  +  1 )  →  ∃ 𝑘  ∈  ℕ0 𝑥  =  ( ( 𝑘  ·  ( 2 ↑ ( 𝑁  +  2 ) ) )  +  1 ) ) ) | 
						
							| 51 | 48 49 50 | mpsyl | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑥  ∈  ℙ  ∧  𝑥  ∥  ( FermatNo ‘ 𝑁 ) )  →  ∃ 𝑘  ∈  ℕ0 𝑥  =  ( ( 𝑘  ·  ( 2 ↑ ( 𝑁  +  2 ) ) )  +  1 ) ) | 
						
							| 52 | 45 46 47 51 | syl3anc | ⊢ ( ( 𝑥  ∈  ℙ  ∧  ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑥  ∥  ( FermatNo ‘ 𝑁 ) ) )  →  ∃ 𝑘  ∈  ℕ0 𝑥  =  ( ( 𝑘  ·  ( 2 ↑ ( 𝑁  +  2 ) ) )  +  1 ) ) | 
						
							| 53 | 52 | ex | ⊢ ( 𝑥  ∈  ℙ  →  ( ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑥  ∥  ( FermatNo ‘ 𝑁 ) )  →  ∃ 𝑘  ∈  ℕ0 𝑥  =  ( ( 𝑘  ·  ( 2 ↑ ( 𝑁  +  2 ) ) )  +  1 ) ) ) | 
						
							| 54 |  | fmtnofac2lem | ⊢ ( ( 𝑦  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑧  ∈  ( ℤ≥ ‘ 2 ) )  →  ( ( ( ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑦  ∥  ( FermatNo ‘ 𝑁 ) )  →  ∃ 𝑘  ∈  ℕ0 𝑦  =  ( ( 𝑘  ·  ( 2 ↑ ( 𝑁  +  2 ) ) )  +  1 ) )  ∧  ( ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑧  ∥  ( FermatNo ‘ 𝑁 ) )  →  ∃ 𝑘  ∈  ℕ0 𝑧  =  ( ( 𝑘  ·  ( 2 ↑ ( 𝑁  +  2 ) ) )  +  1 ) ) )  →  ( ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑦  ·  𝑧 )  ∥  ( FermatNo ‘ 𝑁 ) )  →  ∃ 𝑘  ∈  ℕ0 ( 𝑦  ·  𝑧 )  =  ( ( 𝑘  ·  ( 2 ↑ ( 𝑁  +  2 ) ) )  +  1 ) ) ) ) | 
						
							| 55 | 5 10 15 20 25 43 53 54 | prmind | ⊢ ( 𝑀  ∈  ℕ  →  ( ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑀  ∥  ( FermatNo ‘ 𝑁 ) )  →  ∃ 𝑘  ∈  ℕ0 𝑀  =  ( ( 𝑘  ·  ( 2 ↑ ( 𝑁  +  2 ) ) )  +  1 ) ) ) | 
						
							| 56 | 55 | expd | ⊢ ( 𝑀  ∈  ℕ  →  ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  →  ( 𝑀  ∥  ( FermatNo ‘ 𝑁 )  →  ∃ 𝑘  ∈  ℕ0 𝑀  =  ( ( 𝑘  ·  ( 2 ↑ ( 𝑁  +  2 ) ) )  +  1 ) ) ) ) | 
						
							| 57 | 56 | 3imp21 | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑀  ∈  ℕ  ∧  𝑀  ∥  ( FermatNo ‘ 𝑁 ) )  →  ∃ 𝑘  ∈  ℕ0 𝑀  =  ( ( 𝑘  ·  ( 2 ↑ ( 𝑁  +  2 ) ) )  +  1 ) ) |