Description: Divisor of Fermat number (Euler's Result), see ProofWiki "Divisor of Fermat Number/Euler's Result", 24-Jul-2021, https://proofwiki.org/wiki/Divisor_of_Fermat_Number/Euler's_Result ): "Let F_n be a Fermat number. Let m be divisor of F_n. Then m is in the form: k*2^(n+1)+1 where k is a positive integer." Here, however, k must be a nonnegative integer, because k must be 0 to represent 1 (which is a divisor of F_n ).
Historical Note: In 1747, Leonhard Paul Euler proved that a divisor of a Fermat number F_n is always in the form kx2^(n+1)+1. This was later refined to k*2^(n+2)+1 by FranΓ§ois Γdouard Anatole Lucas, see fmtnofac2 . (Contributed by AV, 30-Jul-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | fmtnofac1 | β’ ( ( π β β β§ π β β β§ π β₯ ( FermatNo β π ) ) β β π β β0 π = ( ( π Β· ( 2 β ( π + 1 ) ) ) + 1 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elnn1uz2 | β’ ( π β β β ( π = 1 β¨ π β ( β€β₯ β 2 ) ) ) | |
2 | 5prm | β’ 5 β β | |
3 | dvdsprime | β’ ( ( 5 β β β§ π β β ) β ( π β₯ 5 β ( π = 5 β¨ π = 1 ) ) ) | |
4 | 2 3 | mpan | β’ ( π β β β ( π β₯ 5 β ( π = 5 β¨ π = 1 ) ) ) |
5 | 1nn0 | β’ 1 β β0 | |
6 | 5 | a1i | β’ ( π = 5 β 1 β β0 ) |
7 | simpl | β’ ( ( π = 5 β§ π = 1 ) β π = 5 ) | |
8 | oveq1 | β’ ( π = 1 β ( π Β· 4 ) = ( 1 Β· 4 ) ) | |
9 | 8 | oveq1d | β’ ( π = 1 β ( ( π Β· 4 ) + 1 ) = ( ( 1 Β· 4 ) + 1 ) ) |
10 | 9 | adantl | β’ ( ( π = 5 β§ π = 1 ) β ( ( π Β· 4 ) + 1 ) = ( ( 1 Β· 4 ) + 1 ) ) |
11 | 7 10 | eqeq12d | β’ ( ( π = 5 β§ π = 1 ) β ( π = ( ( π Β· 4 ) + 1 ) β 5 = ( ( 1 Β· 4 ) + 1 ) ) ) |
12 | df-5 | β’ 5 = ( 4 + 1 ) | |
13 | 4cn | β’ 4 β β | |
14 | 13 | mullidi | β’ ( 1 Β· 4 ) = 4 |
15 | 14 | eqcomi | β’ 4 = ( 1 Β· 4 ) |
16 | 15 | oveq1i | β’ ( 4 + 1 ) = ( ( 1 Β· 4 ) + 1 ) |
17 | 12 16 | eqtri | β’ 5 = ( ( 1 Β· 4 ) + 1 ) |
18 | 17 | a1i | β’ ( π = 5 β 5 = ( ( 1 Β· 4 ) + 1 ) ) |
19 | 6 11 18 | rspcedvd | β’ ( π = 5 β β π β β0 π = ( ( π Β· 4 ) + 1 ) ) |
20 | 0nn0 | β’ 0 β β0 | |
21 | 20 | a1i | β’ ( π = 1 β 0 β β0 ) |
22 | simpl | β’ ( ( π = 1 β§ π = 0 ) β π = 1 ) | |
23 | oveq1 | β’ ( π = 0 β ( π Β· 4 ) = ( 0 Β· 4 ) ) | |
24 | 23 | oveq1d | β’ ( π = 0 β ( ( π Β· 4 ) + 1 ) = ( ( 0 Β· 4 ) + 1 ) ) |
25 | 24 | adantl | β’ ( ( π = 1 β§ π = 0 ) β ( ( π Β· 4 ) + 1 ) = ( ( 0 Β· 4 ) + 1 ) ) |
26 | 22 25 | eqeq12d | β’ ( ( π = 1 β§ π = 0 ) β ( π = ( ( π Β· 4 ) + 1 ) β 1 = ( ( 0 Β· 4 ) + 1 ) ) ) |
27 | 13 | mul02i | β’ ( 0 Β· 4 ) = 0 |
28 | 27 | oveq1i | β’ ( ( 0 Β· 4 ) + 1 ) = ( 0 + 1 ) |
29 | 0p1e1 | β’ ( 0 + 1 ) = 1 | |
30 | 28 29 | eqtri | β’ ( ( 0 Β· 4 ) + 1 ) = 1 |
31 | 30 | eqcomi | β’ 1 = ( ( 0 Β· 4 ) + 1 ) |
32 | 31 | a1i | β’ ( π = 1 β 1 = ( ( 0 Β· 4 ) + 1 ) ) |
33 | 21 26 32 | rspcedvd | β’ ( π = 1 β β π β β0 π = ( ( π Β· 4 ) + 1 ) ) |
34 | 19 33 | jaoi | β’ ( ( π = 5 β¨ π = 1 ) β β π β β0 π = ( ( π Β· 4 ) + 1 ) ) |
35 | 4 34 | syl6bi | β’ ( π β β β ( π β₯ 5 β β π β β0 π = ( ( π Β· 4 ) + 1 ) ) ) |
36 | fveq2 | β’ ( π = 1 β ( FermatNo β π ) = ( FermatNo β 1 ) ) | |
37 | fmtno1 | β’ ( FermatNo β 1 ) = 5 | |
38 | 36 37 | eqtrdi | β’ ( π = 1 β ( FermatNo β π ) = 5 ) |
39 | 38 | breq2d | β’ ( π = 1 β ( π β₯ ( FermatNo β π ) β π β₯ 5 ) ) |
40 | oveq1 | β’ ( π = 1 β ( π + 1 ) = ( 1 + 1 ) ) | |
41 | 1p1e2 | β’ ( 1 + 1 ) = 2 | |
42 | 40 41 | eqtrdi | β’ ( π = 1 β ( π + 1 ) = 2 ) |
43 | 42 | oveq2d | β’ ( π = 1 β ( 2 β ( π + 1 ) ) = ( 2 β 2 ) ) |
44 | sq2 | β’ ( 2 β 2 ) = 4 | |
45 | 43 44 | eqtrdi | β’ ( π = 1 β ( 2 β ( π + 1 ) ) = 4 ) |
46 | 45 | oveq2d | β’ ( π = 1 β ( π Β· ( 2 β ( π + 1 ) ) ) = ( π Β· 4 ) ) |
47 | 46 | oveq1d | β’ ( π = 1 β ( ( π Β· ( 2 β ( π + 1 ) ) ) + 1 ) = ( ( π Β· 4 ) + 1 ) ) |
48 | 47 | eqeq2d | β’ ( π = 1 β ( π = ( ( π Β· ( 2 β ( π + 1 ) ) ) + 1 ) β π = ( ( π Β· 4 ) + 1 ) ) ) |
49 | 48 | rexbidv | β’ ( π = 1 β ( β π β β0 π = ( ( π Β· ( 2 β ( π + 1 ) ) ) + 1 ) β β π β β0 π = ( ( π Β· 4 ) + 1 ) ) ) |
50 | 39 49 | imbi12d | β’ ( π = 1 β ( ( π β₯ ( FermatNo β π ) β β π β β0 π = ( ( π Β· ( 2 β ( π + 1 ) ) ) + 1 ) ) β ( π β₯ 5 β β π β β0 π = ( ( π Β· 4 ) + 1 ) ) ) ) |
51 | 35 50 | imbitrrid | β’ ( π = 1 β ( π β β β ( π β₯ ( FermatNo β π ) β β π β β0 π = ( ( π Β· ( 2 β ( π + 1 ) ) ) + 1 ) ) ) ) |
52 | fmtnofac2 | β’ ( ( π β ( β€β₯ β 2 ) β§ π β β β§ π β₯ ( FermatNo β π ) ) β β π β β0 π = ( ( π Β· ( 2 β ( π + 2 ) ) ) + 1 ) ) | |
53 | id | β’ ( π β β0 β π β β0 ) | |
54 | 2nn0 | β’ 2 β β0 | |
55 | 54 | a1i | β’ ( π β β0 β 2 β β0 ) |
56 | 53 55 | nn0mulcld | β’ ( π β β0 β ( π Β· 2 ) β β0 ) |
57 | 56 | adantl | β’ ( ( ( π β ( β€β₯ β 2 ) β§ π β β β§ π β₯ ( FermatNo β π ) ) β§ π β β0 ) β ( π Β· 2 ) β β0 ) |
58 | 57 | adantr | β’ ( ( ( ( π β ( β€β₯ β 2 ) β§ π β β β§ π β₯ ( FermatNo β π ) ) β§ π β β0 ) β§ π = ( ( π Β· ( 2 β ( π + 2 ) ) ) + 1 ) ) β ( π Β· 2 ) β β0 ) |
59 | simpr | β’ ( ( ( ( π β ( β€β₯ β 2 ) β§ π β β β§ π β₯ ( FermatNo β π ) ) β§ π β β0 ) β§ π = ( ( π Β· ( 2 β ( π + 2 ) ) ) + 1 ) ) β π = ( ( π Β· ( 2 β ( π + 2 ) ) ) + 1 ) ) | |
60 | oveq1 | β’ ( π = ( π Β· 2 ) β ( π Β· ( 2 β ( π + 1 ) ) ) = ( ( π Β· 2 ) Β· ( 2 β ( π + 1 ) ) ) ) | |
61 | 60 | oveq1d | β’ ( π = ( π Β· 2 ) β ( ( π Β· ( 2 β ( π + 1 ) ) ) + 1 ) = ( ( ( π Β· 2 ) Β· ( 2 β ( π + 1 ) ) ) + 1 ) ) |
62 | 59 61 | eqeqan12d | β’ ( ( ( ( ( π β ( β€β₯ β 2 ) β§ π β β β§ π β₯ ( FermatNo β π ) ) β§ π β β0 ) β§ π = ( ( π Β· ( 2 β ( π + 2 ) ) ) + 1 ) ) β§ π = ( π Β· 2 ) ) β ( π = ( ( π Β· ( 2 β ( π + 1 ) ) ) + 1 ) β ( ( π Β· ( 2 β ( π + 2 ) ) ) + 1 ) = ( ( ( π Β· 2 ) Β· ( 2 β ( π + 1 ) ) ) + 1 ) ) ) |
63 | eluzge2nn0 | β’ ( π β ( β€β₯ β 2 ) β π β β0 ) | |
64 | 63 | nn0cnd | β’ ( π β ( β€β₯ β 2 ) β π β β ) |
65 | add1p1 | β’ ( π β β β ( ( π + 1 ) + 1 ) = ( π + 2 ) ) | |
66 | 64 65 | syl | β’ ( π β ( β€β₯ β 2 ) β ( ( π + 1 ) + 1 ) = ( π + 2 ) ) |
67 | 66 | eqcomd | β’ ( π β ( β€β₯ β 2 ) β ( π + 2 ) = ( ( π + 1 ) + 1 ) ) |
68 | 67 | oveq2d | β’ ( π β ( β€β₯ β 2 ) β ( 2 β ( π + 2 ) ) = ( 2 β ( ( π + 1 ) + 1 ) ) ) |
69 | 2cnd | β’ ( π β ( β€β₯ β 2 ) β 2 β β ) | |
70 | peano2nn0 | β’ ( π β β0 β ( π + 1 ) β β0 ) | |
71 | 63 70 | syl | β’ ( π β ( β€β₯ β 2 ) β ( π + 1 ) β β0 ) |
72 | 69 71 | expp1d | β’ ( π β ( β€β₯ β 2 ) β ( 2 β ( ( π + 1 ) + 1 ) ) = ( ( 2 β ( π + 1 ) ) Β· 2 ) ) |
73 | 54 | a1i | β’ ( π β ( β€β₯ β 2 ) β 2 β β0 ) |
74 | 73 71 | nn0expcld | β’ ( π β ( β€β₯ β 2 ) β ( 2 β ( π + 1 ) ) β β0 ) |
75 | 74 | nn0cnd | β’ ( π β ( β€β₯ β 2 ) β ( 2 β ( π + 1 ) ) β β ) |
76 | 75 69 | mulcomd | β’ ( π β ( β€β₯ β 2 ) β ( ( 2 β ( π + 1 ) ) Β· 2 ) = ( 2 Β· ( 2 β ( π + 1 ) ) ) ) |
77 | 68 72 76 | 3eqtrd | β’ ( π β ( β€β₯ β 2 ) β ( 2 β ( π + 2 ) ) = ( 2 Β· ( 2 β ( π + 1 ) ) ) ) |
78 | 77 | adantr | β’ ( ( π β ( β€β₯ β 2 ) β§ π β β0 ) β ( 2 β ( π + 2 ) ) = ( 2 Β· ( 2 β ( π + 1 ) ) ) ) |
79 | 78 | oveq2d | β’ ( ( π β ( β€β₯ β 2 ) β§ π β β0 ) β ( π Β· ( 2 β ( π + 2 ) ) ) = ( π Β· ( 2 Β· ( 2 β ( π + 1 ) ) ) ) ) |
80 | nn0cn | β’ ( π β β0 β π β β ) | |
81 | 80 | adantl | β’ ( ( π β ( β€β₯ β 2 ) β§ π β β0 ) β π β β ) |
82 | 2cnd | β’ ( ( π β ( β€β₯ β 2 ) β§ π β β0 ) β 2 β β ) | |
83 | 75 | adantr | β’ ( ( π β ( β€β₯ β 2 ) β§ π β β0 ) β ( 2 β ( π + 1 ) ) β β ) |
84 | 81 82 83 | mulassd | β’ ( ( π β ( β€β₯ β 2 ) β§ π β β0 ) β ( ( π Β· 2 ) Β· ( 2 β ( π + 1 ) ) ) = ( π Β· ( 2 Β· ( 2 β ( π + 1 ) ) ) ) ) |
85 | 79 84 | eqtr4d | β’ ( ( π β ( β€β₯ β 2 ) β§ π β β0 ) β ( π Β· ( 2 β ( π + 2 ) ) ) = ( ( π Β· 2 ) Β· ( 2 β ( π + 1 ) ) ) ) |
86 | 85 | 3ad2antl1 | β’ ( ( ( π β ( β€β₯ β 2 ) β§ π β β β§ π β₯ ( FermatNo β π ) ) β§ π β β0 ) β ( π Β· ( 2 β ( π + 2 ) ) ) = ( ( π Β· 2 ) Β· ( 2 β ( π + 1 ) ) ) ) |
87 | 86 | adantr | β’ ( ( ( ( π β ( β€β₯ β 2 ) β§ π β β β§ π β₯ ( FermatNo β π ) ) β§ π β β0 ) β§ π = ( ( π Β· ( 2 β ( π + 2 ) ) ) + 1 ) ) β ( π Β· ( 2 β ( π + 2 ) ) ) = ( ( π Β· 2 ) Β· ( 2 β ( π + 1 ) ) ) ) |
88 | 87 | oveq1d | β’ ( ( ( ( π β ( β€β₯ β 2 ) β§ π β β β§ π β₯ ( FermatNo β π ) ) β§ π β β0 ) β§ π = ( ( π Β· ( 2 β ( π + 2 ) ) ) + 1 ) ) β ( ( π Β· ( 2 β ( π + 2 ) ) ) + 1 ) = ( ( ( π Β· 2 ) Β· ( 2 β ( π + 1 ) ) ) + 1 ) ) |
89 | 58 62 88 | rspcedvd | β’ ( ( ( ( π β ( β€β₯ β 2 ) β§ π β β β§ π β₯ ( FermatNo β π ) ) β§ π β β0 ) β§ π = ( ( π Β· ( 2 β ( π + 2 ) ) ) + 1 ) ) β β π β β0 π = ( ( π Β· ( 2 β ( π + 1 ) ) ) + 1 ) ) |
90 | 89 | rexlimdva2 | β’ ( ( π β ( β€β₯ β 2 ) β§ π β β β§ π β₯ ( FermatNo β π ) ) β ( β π β β0 π = ( ( π Β· ( 2 β ( π + 2 ) ) ) + 1 ) β β π β β0 π = ( ( π Β· ( 2 β ( π + 1 ) ) ) + 1 ) ) ) |
91 | 52 90 | mpd | β’ ( ( π β ( β€β₯ β 2 ) β§ π β β β§ π β₯ ( FermatNo β π ) ) β β π β β0 π = ( ( π Β· ( 2 β ( π + 1 ) ) ) + 1 ) ) |
92 | 91 | 3exp | β’ ( π β ( β€β₯ β 2 ) β ( π β β β ( π β₯ ( FermatNo β π ) β β π β β0 π = ( ( π Β· ( 2 β ( π + 1 ) ) ) + 1 ) ) ) ) |
93 | 51 92 | jaoi | β’ ( ( π = 1 β¨ π β ( β€β₯ β 2 ) ) β ( π β β β ( π β₯ ( FermatNo β π ) β β π β β0 π = ( ( π Β· ( 2 β ( π + 1 ) ) ) + 1 ) ) ) ) |
94 | 1 93 | sylbi | β’ ( π β β β ( π β β β ( π β₯ ( FermatNo β π ) β β π β β0 π = ( ( π Β· ( 2 β ( π + 1 ) ) ) + 1 ) ) ) ) |
95 | 94 | 3imp | β’ ( ( π β β β§ π β β β§ π β₯ ( FermatNo β π ) ) β β π β β0 π = ( ( π Β· ( 2 β ( π + 1 ) ) ) + 1 ) ) |