| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simp3 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → 𝑁 ∈ ℕ ) |
| 2 |
|
simp1 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → 𝐴 ∈ ℤ ) |
| 3 |
|
znegcl |
⊢ ( 𝐵 ∈ ℤ → - 𝐵 ∈ ℤ ) |
| 4 |
3
|
3ad2ant2 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → - 𝐵 ∈ ℤ ) |
| 5 |
|
moddvds |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ - 𝐵 ∈ ℤ ) → ( ( 𝐴 mod 𝑁 ) = ( - 𝐵 mod 𝑁 ) ↔ 𝑁 ∥ ( 𝐴 − - 𝐵 ) ) ) |
| 6 |
1 2 4 5
|
syl3anc |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( ( 𝐴 mod 𝑁 ) = ( - 𝐵 mod 𝑁 ) ↔ 𝑁 ∥ ( 𝐴 − - 𝐵 ) ) ) |
| 7 |
|
zcn |
⊢ ( 𝐴 ∈ ℤ → 𝐴 ∈ ℂ ) |
| 8 |
|
zcn |
⊢ ( 𝐵 ∈ ℤ → 𝐵 ∈ ℂ ) |
| 9 |
7 8
|
anim12i |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ) |
| 10 |
9
|
3adant3 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ) |
| 11 |
|
subneg |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 − - 𝐵 ) = ( 𝐴 + 𝐵 ) ) |
| 12 |
11
|
eqcomd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 + 𝐵 ) = ( 𝐴 − - 𝐵 ) ) |
| 13 |
10 12
|
syl |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( 𝐴 + 𝐵 ) = ( 𝐴 − - 𝐵 ) ) |
| 14 |
13
|
breq2d |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( 𝑁 ∥ ( 𝐴 + 𝐵 ) ↔ 𝑁 ∥ ( 𝐴 − - 𝐵 ) ) ) |
| 15 |
|
zaddcl |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 + 𝐵 ) ∈ ℤ ) |
| 16 |
15
|
3adant3 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( 𝐴 + 𝐵 ) ∈ ℤ ) |
| 17 |
|
dvdsval3 |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 + 𝐵 ) ∈ ℤ ) → ( 𝑁 ∥ ( 𝐴 + 𝐵 ) ↔ ( ( 𝐴 + 𝐵 ) mod 𝑁 ) = 0 ) ) |
| 18 |
1 16 17
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( 𝑁 ∥ ( 𝐴 + 𝐵 ) ↔ ( ( 𝐴 + 𝐵 ) mod 𝑁 ) = 0 ) ) |
| 19 |
6 14 18
|
3bitr2rd |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( ( ( 𝐴 + 𝐵 ) mod 𝑁 ) = 0 ↔ ( 𝐴 mod 𝑁 ) = ( - 𝐵 mod 𝑁 ) ) ) |