| Step |
Hyp |
Ref |
Expression |
| 1 |
|
zcn |
⊢ ( 𝐴 ∈ ℤ → 𝐴 ∈ ℂ ) |
| 2 |
|
zcn |
⊢ ( 𝐵 ∈ ℤ → 𝐵 ∈ ℂ ) |
| 3 |
1 2
|
anim12i |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ) |
| 4 |
3
|
3adant3 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ) |
| 5 |
|
negsub |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 + - 𝐵 ) = ( 𝐴 − 𝐵 ) ) |
| 6 |
4 5
|
syl |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( 𝐴 + - 𝐵 ) = ( 𝐴 − 𝐵 ) ) |
| 7 |
6
|
eqcomd |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( 𝐴 − 𝐵 ) = ( 𝐴 + - 𝐵 ) ) |
| 8 |
7
|
oveq1d |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( ( 𝐴 − 𝐵 ) mod 𝑁 ) = ( ( 𝐴 + - 𝐵 ) mod 𝑁 ) ) |
| 9 |
8
|
eqeq1d |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( ( ( 𝐴 − 𝐵 ) mod 𝑁 ) = 0 ↔ ( ( 𝐴 + - 𝐵 ) mod 𝑁 ) = 0 ) ) |
| 10 |
|
znegcl |
⊢ ( 𝐵 ∈ ℤ → - 𝐵 ∈ ℤ ) |
| 11 |
|
summodnegmod |
⊢ ( ( 𝐴 ∈ ℤ ∧ - 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( ( ( 𝐴 + - 𝐵 ) mod 𝑁 ) = 0 ↔ ( 𝐴 mod 𝑁 ) = ( - - 𝐵 mod 𝑁 ) ) ) |
| 12 |
10 11
|
syl3an2 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( ( ( 𝐴 + - 𝐵 ) mod 𝑁 ) = 0 ↔ ( 𝐴 mod 𝑁 ) = ( - - 𝐵 mod 𝑁 ) ) ) |
| 13 |
2
|
negnegd |
⊢ ( 𝐵 ∈ ℤ → - - 𝐵 = 𝐵 ) |
| 14 |
13
|
3ad2ant2 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → - - 𝐵 = 𝐵 ) |
| 15 |
14
|
oveq1d |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( - - 𝐵 mod 𝑁 ) = ( 𝐵 mod 𝑁 ) ) |
| 16 |
15
|
eqeq2d |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( ( 𝐴 mod 𝑁 ) = ( - - 𝐵 mod 𝑁 ) ↔ ( 𝐴 mod 𝑁 ) = ( 𝐵 mod 𝑁 ) ) ) |
| 17 |
9 12 16
|
3bitrd |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( ( ( 𝐴 − 𝐵 ) mod 𝑁 ) = 0 ↔ ( 𝐴 mod 𝑁 ) = ( 𝐵 mod 𝑁 ) ) ) |