| Step |
Hyp |
Ref |
Expression |
| 1 |
|
zcn |
|- ( A e. ZZ -> A e. CC ) |
| 2 |
|
zcn |
|- ( B e. ZZ -> B e. CC ) |
| 3 |
1 2
|
anim12i |
|- ( ( A e. ZZ /\ B e. ZZ ) -> ( A e. CC /\ B e. CC ) ) |
| 4 |
3
|
3adant3 |
|- ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) -> ( A e. CC /\ B e. CC ) ) |
| 5 |
|
negsub |
|- ( ( A e. CC /\ B e. CC ) -> ( A + -u B ) = ( A - B ) ) |
| 6 |
4 5
|
syl |
|- ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) -> ( A + -u B ) = ( A - B ) ) |
| 7 |
6
|
eqcomd |
|- ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) -> ( A - B ) = ( A + -u B ) ) |
| 8 |
7
|
oveq1d |
|- ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) -> ( ( A - B ) mod N ) = ( ( A + -u B ) mod N ) ) |
| 9 |
8
|
eqeq1d |
|- ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) -> ( ( ( A - B ) mod N ) = 0 <-> ( ( A + -u B ) mod N ) = 0 ) ) |
| 10 |
|
znegcl |
|- ( B e. ZZ -> -u B e. ZZ ) |
| 11 |
|
summodnegmod |
|- ( ( A e. ZZ /\ -u B e. ZZ /\ N e. NN ) -> ( ( ( A + -u B ) mod N ) = 0 <-> ( A mod N ) = ( -u -u B mod N ) ) ) |
| 12 |
10 11
|
syl3an2 |
|- ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) -> ( ( ( A + -u B ) mod N ) = 0 <-> ( A mod N ) = ( -u -u B mod N ) ) ) |
| 13 |
2
|
negnegd |
|- ( B e. ZZ -> -u -u B = B ) |
| 14 |
13
|
3ad2ant2 |
|- ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) -> -u -u B = B ) |
| 15 |
14
|
oveq1d |
|- ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) -> ( -u -u B mod N ) = ( B mod N ) ) |
| 16 |
15
|
eqeq2d |
|- ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) -> ( ( A mod N ) = ( -u -u B mod N ) <-> ( A mod N ) = ( B mod N ) ) ) |
| 17 |
9 12 16
|
3bitrd |
|- ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) -> ( ( ( A - B ) mod N ) = 0 <-> ( A mod N ) = ( B mod N ) ) ) |