Metamath Proof Explorer


Theorem difmod0

Description: The difference of two integers modulo a positive integer equals zero iff the two integers are equal modulo the positive integer. (Contributed by AV, 15-Nov-2025)

Ref Expression
Assertion difmod0 A B N A B mod N = 0 A mod N = B mod N

Proof

Step Hyp Ref Expression
1 zcn A A
2 zcn B B
3 1 2 anim12i A B A B
4 3 3adant3 A B N A B
5 negsub A B A + B = A B
6 4 5 syl A B N A + B = A B
7 6 eqcomd A B N A B = A + B
8 7 oveq1d A B N A B mod N = A + B mod N
9 8 eqeq1d A B N A B mod N = 0 A + B mod N = 0
10 znegcl B B
11 summodnegmod A B N A + B mod N = 0 A mod N = B mod N
12 10 11 syl3an2 A B N A + B mod N = 0 A mod N = B mod N
13 2 negnegd B B = B
14 13 3ad2ant2 A B N B = B
15 14 oveq1d A B N B mod N = B mod N
16 15 eqeq2d A B N A mod N = B mod N A mod N = B mod N
17 9 12 16 3bitrd A B N A B mod N = 0 A mod N = B mod N