| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvdsprmpweq |
|- ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) -> ( A || ( P ^ N ) -> E. n e. NN0 A = ( P ^ n ) ) ) |
| 2 |
1
|
imp |
|- ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ A || ( P ^ N ) ) -> E. n e. NN0 A = ( P ^ n ) ) |
| 3 |
|
nn0re |
|- ( N e. NN0 -> N e. RR ) |
| 4 |
3
|
3ad2ant3 |
|- ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) -> N e. RR ) |
| 5 |
4
|
adantr |
|- ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ A || ( P ^ N ) ) -> N e. RR ) |
| 6 |
|
nn0re |
|- ( n e. NN0 -> n e. RR ) |
| 7 |
5 6
|
anim12ci |
|- ( ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ A || ( P ^ N ) ) /\ n e. NN0 ) -> ( n e. RR /\ N e. RR ) ) |
| 8 |
7
|
adantr |
|- ( ( ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ A || ( P ^ N ) ) /\ n e. NN0 ) /\ A = ( P ^ n ) ) -> ( n e. RR /\ N e. RR ) ) |
| 9 |
|
lelttric |
|- ( ( n e. RR /\ N e. RR ) -> ( n <_ N \/ N < n ) ) |
| 10 |
8 9
|
syl |
|- ( ( ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ A || ( P ^ N ) ) /\ n e. NN0 ) /\ A = ( P ^ n ) ) -> ( n <_ N \/ N < n ) ) |
| 11 |
|
breq1 |
|- ( A = ( P ^ n ) -> ( A || ( P ^ N ) <-> ( P ^ n ) || ( P ^ N ) ) ) |
| 12 |
11
|
adantl |
|- ( ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) /\ A = ( P ^ n ) ) -> ( A || ( P ^ N ) <-> ( P ^ n ) || ( P ^ N ) ) ) |
| 13 |
|
prmnn |
|- ( P e. Prime -> P e. NN ) |
| 14 |
13
|
nnnn0d |
|- ( P e. Prime -> P e. NN0 ) |
| 15 |
14
|
3ad2ant1 |
|- ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) -> P e. NN0 ) |
| 16 |
15
|
adantr |
|- ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) -> P e. NN0 ) |
| 17 |
|
simpr |
|- ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) -> n e. NN0 ) |
| 18 |
16 17
|
nn0expcld |
|- ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) -> ( P ^ n ) e. NN0 ) |
| 19 |
18
|
nn0zd |
|- ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) -> ( P ^ n ) e. ZZ ) |
| 20 |
13
|
nncnd |
|- ( P e. Prime -> P e. CC ) |
| 21 |
20
|
3ad2ant1 |
|- ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) -> P e. CC ) |
| 22 |
21
|
adantr |
|- ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) -> P e. CC ) |
| 23 |
13
|
nnne0d |
|- ( P e. Prime -> P =/= 0 ) |
| 24 |
23
|
3ad2ant1 |
|- ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) -> P =/= 0 ) |
| 25 |
24
|
adantr |
|- ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) -> P =/= 0 ) |
| 26 |
|
nn0z |
|- ( n e. NN0 -> n e. ZZ ) |
| 27 |
26
|
adantl |
|- ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) -> n e. ZZ ) |
| 28 |
22 25 27
|
expne0d |
|- ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) -> ( P ^ n ) =/= 0 ) |
| 29 |
|
simp3 |
|- ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) -> N e. NN0 ) |
| 30 |
29
|
adantr |
|- ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) -> N e. NN0 ) |
| 31 |
16 30
|
nn0expcld |
|- ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) -> ( P ^ N ) e. NN0 ) |
| 32 |
31
|
nn0zd |
|- ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) -> ( P ^ N ) e. ZZ ) |
| 33 |
|
dvdsval2 |
|- ( ( ( P ^ n ) e. ZZ /\ ( P ^ n ) =/= 0 /\ ( P ^ N ) e. ZZ ) -> ( ( P ^ n ) || ( P ^ N ) <-> ( ( P ^ N ) / ( P ^ n ) ) e. ZZ ) ) |
| 34 |
19 28 32 33
|
syl3anc |
|- ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) -> ( ( P ^ n ) || ( P ^ N ) <-> ( ( P ^ N ) / ( P ^ n ) ) e. ZZ ) ) |
| 35 |
20 23
|
jca |
|- ( P e. Prime -> ( P e. CC /\ P =/= 0 ) ) |
| 36 |
35
|
3ad2ant1 |
|- ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) -> ( P e. CC /\ P =/= 0 ) ) |
| 37 |
|
nn0z |
|- ( N e. NN0 -> N e. ZZ ) |
| 38 |
37
|
3ad2ant3 |
|- ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) -> N e. ZZ ) |
| 39 |
38 26
|
anim12i |
|- ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) -> ( N e. ZZ /\ n e. ZZ ) ) |
| 40 |
|
expsub |
|- ( ( ( P e. CC /\ P =/= 0 ) /\ ( N e. ZZ /\ n e. ZZ ) ) -> ( P ^ ( N - n ) ) = ( ( P ^ N ) / ( P ^ n ) ) ) |
| 41 |
40
|
eqcomd |
|- ( ( ( P e. CC /\ P =/= 0 ) /\ ( N e. ZZ /\ n e. ZZ ) ) -> ( ( P ^ N ) / ( P ^ n ) ) = ( P ^ ( N - n ) ) ) |
| 42 |
36 39 41
|
syl2an2r |
|- ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) -> ( ( P ^ N ) / ( P ^ n ) ) = ( P ^ ( N - n ) ) ) |
| 43 |
42
|
eleq1d |
|- ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) -> ( ( ( P ^ N ) / ( P ^ n ) ) e. ZZ <-> ( P ^ ( N - n ) ) e. ZZ ) ) |
| 44 |
22
|
adantr |
|- ( ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) /\ N < n ) -> P e. CC ) |
| 45 |
|
nn0cn |
|- ( N e. NN0 -> N e. CC ) |
| 46 |
45
|
3ad2ant3 |
|- ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) -> N e. CC ) |
| 47 |
46
|
adantr |
|- ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) -> N e. CC ) |
| 48 |
|
nn0cn |
|- ( n e. NN0 -> n e. CC ) |
| 49 |
48
|
adantl |
|- ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) -> n e. CC ) |
| 50 |
47 49
|
subcld |
|- ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) -> ( N - n ) e. CC ) |
| 51 |
50
|
adantr |
|- ( ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) /\ N < n ) -> ( N - n ) e. CC ) |
| 52 |
46 48
|
anim12i |
|- ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) -> ( N e. CC /\ n e. CC ) ) |
| 53 |
52
|
adantr |
|- ( ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) /\ N < n ) -> ( N e. CC /\ n e. CC ) ) |
| 54 |
|
negsubdi2 |
|- ( ( N e. CC /\ n e. CC ) -> -u ( N - n ) = ( n - N ) ) |
| 55 |
53 54
|
syl |
|- ( ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) /\ N < n ) -> -u ( N - n ) = ( n - N ) ) |
| 56 |
29
|
anim1ci |
|- ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) -> ( n e. NN0 /\ N e. NN0 ) ) |
| 57 |
|
ltsubnn0 |
|- ( ( n e. NN0 /\ N e. NN0 ) -> ( N < n -> ( n - N ) e. NN0 ) ) |
| 58 |
56 57
|
syl |
|- ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) -> ( N < n -> ( n - N ) e. NN0 ) ) |
| 59 |
58
|
imp |
|- ( ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) /\ N < n ) -> ( n - N ) e. NN0 ) |
| 60 |
55 59
|
eqeltrd |
|- ( ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) /\ N < n ) -> -u ( N - n ) e. NN0 ) |
| 61 |
|
expneg2 |
|- ( ( P e. CC /\ ( N - n ) e. CC /\ -u ( N - n ) e. NN0 ) -> ( P ^ ( N - n ) ) = ( 1 / ( P ^ -u ( N - n ) ) ) ) |
| 62 |
44 51 60 61
|
syl3anc |
|- ( ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) /\ N < n ) -> ( P ^ ( N - n ) ) = ( 1 / ( P ^ -u ( N - n ) ) ) ) |
| 63 |
62
|
eleq1d |
|- ( ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) /\ N < n ) -> ( ( P ^ ( N - n ) ) e. ZZ <-> ( 1 / ( P ^ -u ( N - n ) ) ) e. ZZ ) ) |
| 64 |
13
|
nnred |
|- ( P e. Prime -> P e. RR ) |
| 65 |
64
|
3ad2ant1 |
|- ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) -> P e. RR ) |
| 66 |
65
|
adantr |
|- ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) -> P e. RR ) |
| 67 |
66
|
adantr |
|- ( ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) /\ N < n ) -> P e. RR ) |
| 68 |
67 59
|
reexpcld |
|- ( ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) /\ N < n ) -> ( P ^ ( n - N ) ) e. RR ) |
| 69 |
|
znnsub |
|- ( ( N e. ZZ /\ n e. ZZ ) -> ( N < n <-> ( n - N ) e. NN ) ) |
| 70 |
39 69
|
syl |
|- ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) -> ( N < n <-> ( n - N ) e. NN ) ) |
| 71 |
70
|
biimpa |
|- ( ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) /\ N < n ) -> ( n - N ) e. NN ) |
| 72 |
|
prmgt1 |
|- ( P e. Prime -> 1 < P ) |
| 73 |
72
|
3ad2ant1 |
|- ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) -> 1 < P ) |
| 74 |
73
|
adantr |
|- ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) -> 1 < P ) |
| 75 |
74
|
adantr |
|- ( ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) /\ N < n ) -> 1 < P ) |
| 76 |
|
expgt1 |
|- ( ( P e. RR /\ ( n - N ) e. NN /\ 1 < P ) -> 1 < ( P ^ ( n - N ) ) ) |
| 77 |
67 71 75 76
|
syl3anc |
|- ( ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) /\ N < n ) -> 1 < ( P ^ ( n - N ) ) ) |
| 78 |
68 77
|
jca |
|- ( ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) /\ N < n ) -> ( ( P ^ ( n - N ) ) e. RR /\ 1 < ( P ^ ( n - N ) ) ) ) |
| 79 |
|
oveq2 |
|- ( -u ( N - n ) = ( n - N ) -> ( P ^ -u ( N - n ) ) = ( P ^ ( n - N ) ) ) |
| 80 |
79
|
eleq1d |
|- ( -u ( N - n ) = ( n - N ) -> ( ( P ^ -u ( N - n ) ) e. RR <-> ( P ^ ( n - N ) ) e. RR ) ) |
| 81 |
79
|
breq2d |
|- ( -u ( N - n ) = ( n - N ) -> ( 1 < ( P ^ -u ( N - n ) ) <-> 1 < ( P ^ ( n - N ) ) ) ) |
| 82 |
80 81
|
anbi12d |
|- ( -u ( N - n ) = ( n - N ) -> ( ( ( P ^ -u ( N - n ) ) e. RR /\ 1 < ( P ^ -u ( N - n ) ) ) <-> ( ( P ^ ( n - N ) ) e. RR /\ 1 < ( P ^ ( n - N ) ) ) ) ) |
| 83 |
78 82
|
syl5ibrcom |
|- ( ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) /\ N < n ) -> ( -u ( N - n ) = ( n - N ) -> ( ( P ^ -u ( N - n ) ) e. RR /\ 1 < ( P ^ -u ( N - n ) ) ) ) ) |
| 84 |
55 83
|
mpd |
|- ( ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) /\ N < n ) -> ( ( P ^ -u ( N - n ) ) e. RR /\ 1 < ( P ^ -u ( N - n ) ) ) ) |
| 85 |
|
recnz |
|- ( ( ( P ^ -u ( N - n ) ) e. RR /\ 1 < ( P ^ -u ( N - n ) ) ) -> -. ( 1 / ( P ^ -u ( N - n ) ) ) e. ZZ ) |
| 86 |
84 85
|
syl |
|- ( ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) /\ N < n ) -> -. ( 1 / ( P ^ -u ( N - n ) ) ) e. ZZ ) |
| 87 |
86
|
pm2.21d |
|- ( ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) /\ N < n ) -> ( ( 1 / ( P ^ -u ( N - n ) ) ) e. ZZ -> n <_ N ) ) |
| 88 |
63 87
|
sylbid |
|- ( ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) /\ N < n ) -> ( ( P ^ ( N - n ) ) e. ZZ -> n <_ N ) ) |
| 89 |
88
|
ex |
|- ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) -> ( N < n -> ( ( P ^ ( N - n ) ) e. ZZ -> n <_ N ) ) ) |
| 90 |
89
|
com23 |
|- ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) -> ( ( P ^ ( N - n ) ) e. ZZ -> ( N < n -> n <_ N ) ) ) |
| 91 |
43 90
|
sylbid |
|- ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) -> ( ( ( P ^ N ) / ( P ^ n ) ) e. ZZ -> ( N < n -> n <_ N ) ) ) |
| 92 |
34 91
|
sylbid |
|- ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) -> ( ( P ^ n ) || ( P ^ N ) -> ( N < n -> n <_ N ) ) ) |
| 93 |
92
|
adantr |
|- ( ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) /\ A = ( P ^ n ) ) -> ( ( P ^ n ) || ( P ^ N ) -> ( N < n -> n <_ N ) ) ) |
| 94 |
12 93
|
sylbid |
|- ( ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) /\ A = ( P ^ n ) ) -> ( A || ( P ^ N ) -> ( N < n -> n <_ N ) ) ) |
| 95 |
94
|
ex |
|- ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) -> ( A = ( P ^ n ) -> ( A || ( P ^ N ) -> ( N < n -> n <_ N ) ) ) ) |
| 96 |
95
|
com23 |
|- ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ n e. NN0 ) -> ( A || ( P ^ N ) -> ( A = ( P ^ n ) -> ( N < n -> n <_ N ) ) ) ) |
| 97 |
96
|
ex |
|- ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) -> ( n e. NN0 -> ( A || ( P ^ N ) -> ( A = ( P ^ n ) -> ( N < n -> n <_ N ) ) ) ) ) |
| 98 |
97
|
com23 |
|- ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) -> ( A || ( P ^ N ) -> ( n e. NN0 -> ( A = ( P ^ n ) -> ( N < n -> n <_ N ) ) ) ) ) |
| 99 |
98
|
imp41 |
|- ( ( ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ A || ( P ^ N ) ) /\ n e. NN0 ) /\ A = ( P ^ n ) ) -> ( N < n -> n <_ N ) ) |
| 100 |
99
|
com12 |
|- ( N < n -> ( ( ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ A || ( P ^ N ) ) /\ n e. NN0 ) /\ A = ( P ^ n ) ) -> n <_ N ) ) |
| 101 |
100
|
jao1i |
|- ( ( n <_ N \/ N < n ) -> ( ( ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ A || ( P ^ N ) ) /\ n e. NN0 ) /\ A = ( P ^ n ) ) -> n <_ N ) ) |
| 102 |
10 101
|
mpcom |
|- ( ( ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ A || ( P ^ N ) ) /\ n e. NN0 ) /\ A = ( P ^ n ) ) -> n <_ N ) |
| 103 |
|
simpr |
|- ( ( ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ A || ( P ^ N ) ) /\ n e. NN0 ) /\ A = ( P ^ n ) ) -> A = ( P ^ n ) ) |
| 104 |
102 103
|
jca |
|- ( ( ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ A || ( P ^ N ) ) /\ n e. NN0 ) /\ A = ( P ^ n ) ) -> ( n <_ N /\ A = ( P ^ n ) ) ) |
| 105 |
104
|
ex |
|- ( ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ A || ( P ^ N ) ) /\ n e. NN0 ) -> ( A = ( P ^ n ) -> ( n <_ N /\ A = ( P ^ n ) ) ) ) |
| 106 |
105
|
reximdva |
|- ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ A || ( P ^ N ) ) -> ( E. n e. NN0 A = ( P ^ n ) -> E. n e. NN0 ( n <_ N /\ A = ( P ^ n ) ) ) ) |
| 107 |
2 106
|
mpd |
|- ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ A || ( P ^ N ) ) -> E. n e. NN0 ( n <_ N /\ A = ( P ^ n ) ) ) |
| 108 |
107
|
ex |
|- ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) -> ( A || ( P ^ N ) -> E. n e. NN0 ( n <_ N /\ A = ( P ^ n ) ) ) ) |