Description: A simple product of sums expansion. (Contributed by AV, 30-Jul-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | muladd11r | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl | |
|
2 | 1cnd | |
|
3 | 1 2 | addcomd | |
4 | simpr | |
|
5 | 4 2 | addcomd | |
6 | 3 5 | oveq12d | |
7 | muladd11 | |
|
8 | mulcl | |
|
9 | 4 8 | addcld | |
10 | 2 1 9 | addassd | |
11 | 1 9 | addcld | |
12 | 2 11 | addcomd | |
13 | 1 4 8 | addassd | |
14 | addcl | |
|
15 | 14 8 | addcomd | |
16 | 13 15 | eqtr3d | |
17 | 16 | oveq1d | |
18 | 10 12 17 | 3eqtrd | |
19 | 6 7 18 | 3eqtrd | |