Metamath Proof Explorer


Theorem muladd11r

Description: A simple product of sums expansion. (Contributed by AV, 30-Jul-2021)

Ref Expression
Assertion muladd11r ABA+1B+1=AB+A+B+1

Proof

Step Hyp Ref Expression
1 simpl ABA
2 1cnd AB1
3 1 2 addcomd ABA+1=1+A
4 simpr ABB
5 4 2 addcomd ABB+1=1+B
6 3 5 oveq12d ABA+1B+1=1+A1+B
7 muladd11 AB1+A1+B=1+A+B+AB
8 mulcl ABAB
9 4 8 addcld ABB+AB
10 2 1 9 addassd AB1+A+B+AB=1+A+B+AB
11 1 9 addcld ABA+B+AB
12 2 11 addcomd AB1+A+B+AB=A+B+AB+1
13 1 4 8 addassd ABA+B+AB=A+B+AB
14 addcl ABA+B
15 14 8 addcomd ABA+B+AB=AB+A+B
16 13 15 eqtr3d ABA+B+AB=AB+A+B
17 16 oveq1d ABA+B+AB+1=AB+A+B+1
18 10 12 17 3eqtrd AB1+A+B+AB=AB+A+B+1
19 6 7 18 3eqtrd ABA+1B+1=AB+A+B+1