| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpl | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  →  𝐴  ∈  ℂ ) | 
						
							| 2 |  | 1cnd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  →  1  ∈  ℂ ) | 
						
							| 3 | 1 2 | addcomd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  →  ( 𝐴  +  1 )  =  ( 1  +  𝐴 ) ) | 
						
							| 4 |  | simpr | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  →  𝐵  ∈  ℂ ) | 
						
							| 5 | 4 2 | addcomd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  →  ( 𝐵  +  1 )  =  ( 1  +  𝐵 ) ) | 
						
							| 6 | 3 5 | oveq12d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  →  ( ( 𝐴  +  1 )  ·  ( 𝐵  +  1 ) )  =  ( ( 1  +  𝐴 )  ·  ( 1  +  𝐵 ) ) ) | 
						
							| 7 |  | muladd11 | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  →  ( ( 1  +  𝐴 )  ·  ( 1  +  𝐵 ) )  =  ( ( 1  +  𝐴 )  +  ( 𝐵  +  ( 𝐴  ·  𝐵 ) ) ) ) | 
						
							| 8 |  | mulcl | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  →  ( 𝐴  ·  𝐵 )  ∈  ℂ ) | 
						
							| 9 | 4 8 | addcld | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  →  ( 𝐵  +  ( 𝐴  ·  𝐵 ) )  ∈  ℂ ) | 
						
							| 10 | 2 1 9 | addassd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  →  ( ( 1  +  𝐴 )  +  ( 𝐵  +  ( 𝐴  ·  𝐵 ) ) )  =  ( 1  +  ( 𝐴  +  ( 𝐵  +  ( 𝐴  ·  𝐵 ) ) ) ) ) | 
						
							| 11 | 1 9 | addcld | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  →  ( 𝐴  +  ( 𝐵  +  ( 𝐴  ·  𝐵 ) ) )  ∈  ℂ ) | 
						
							| 12 | 2 11 | addcomd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  →  ( 1  +  ( 𝐴  +  ( 𝐵  +  ( 𝐴  ·  𝐵 ) ) ) )  =  ( ( 𝐴  +  ( 𝐵  +  ( 𝐴  ·  𝐵 ) ) )  +  1 ) ) | 
						
							| 13 | 1 4 8 | addassd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  →  ( ( 𝐴  +  𝐵 )  +  ( 𝐴  ·  𝐵 ) )  =  ( 𝐴  +  ( 𝐵  +  ( 𝐴  ·  𝐵 ) ) ) ) | 
						
							| 14 |  | addcl | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  →  ( 𝐴  +  𝐵 )  ∈  ℂ ) | 
						
							| 15 | 14 8 | addcomd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  →  ( ( 𝐴  +  𝐵 )  +  ( 𝐴  ·  𝐵 ) )  =  ( ( 𝐴  ·  𝐵 )  +  ( 𝐴  +  𝐵 ) ) ) | 
						
							| 16 | 13 15 | eqtr3d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  →  ( 𝐴  +  ( 𝐵  +  ( 𝐴  ·  𝐵 ) ) )  =  ( ( 𝐴  ·  𝐵 )  +  ( 𝐴  +  𝐵 ) ) ) | 
						
							| 17 | 16 | oveq1d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  →  ( ( 𝐴  +  ( 𝐵  +  ( 𝐴  ·  𝐵 ) ) )  +  1 )  =  ( ( ( 𝐴  ·  𝐵 )  +  ( 𝐴  +  𝐵 ) )  +  1 ) ) | 
						
							| 18 | 10 12 17 | 3eqtrd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  →  ( ( 1  +  𝐴 )  +  ( 𝐵  +  ( 𝐴  ·  𝐵 ) ) )  =  ( ( ( 𝐴  ·  𝐵 )  +  ( 𝐴  +  𝐵 ) )  +  1 ) ) | 
						
							| 19 | 6 7 18 | 3eqtrd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  →  ( ( 𝐴  +  1 )  ·  ( 𝐵  +  1 ) )  =  ( ( ( 𝐴  ·  𝐵 )  +  ( 𝐴  +  𝐵 ) )  +  1 ) ) |