Metamath Proof Explorer


Theorem prmdvdsfmtnof1

Description: The mapping of a Fermat number to its smallest prime factor is a one-to-one function. (Contributed by AV, 4-Aug-2021)

Ref Expression
Hypothesis prmdvdsfmtnof.1 F = f ran FermatNo sup p | p f <
Assertion prmdvdsfmtnof1 F : ran FermatNo 1-1

Proof

Step Hyp Ref Expression
1 prmdvdsfmtnof.1 F = f ran FermatNo sup p | p f <
2 1 prmdvdsfmtnof F : ran FermatNo
3 breq2 f = g p f p g
4 3 rabbidv f = g p | p f = p | p g
5 4 infeq1d f = g sup p | p f < = sup p | p g <
6 id g ran FermatNo g ran FermatNo
7 ltso < Or
8 7 a1i g ran FermatNo < Or
9 8 infexd g ran FermatNo sup p | p g < V
10 1 5 6 9 fvmptd3 g ran FermatNo F g = sup p | p g <
11 breq2 f = h p f p h
12 11 rabbidv f = h p | p f = p | p h
13 12 infeq1d f = h sup p | p f < = sup p | p h <
14 id h ran FermatNo h ran FermatNo
15 7 a1i h ran FermatNo < Or
16 15 infexd h ran FermatNo sup p | p h < V
17 1 13 14 16 fvmptd3 h ran FermatNo F h = sup p | p h <
18 10 17 eqeqan12d g ran FermatNo h ran FermatNo F g = F h sup p | p g < = sup p | p h <
19 fmtnorn g ran FermatNo n 0 FermatNo n = g
20 fmtnoge3 n 0 FermatNo n 3
21 uzuzle23 FermatNo n 3 FermatNo n 2
22 20 21 syl n 0 FermatNo n 2
23 22 adantr n 0 FermatNo n = g FermatNo n 2
24 eleq1 FermatNo n = g FermatNo n 2 g 2
25 24 adantl n 0 FermatNo n = g FermatNo n 2 g 2
26 23 25 mpbid n 0 FermatNo n = g g 2
27 26 rexlimiva n 0 FermatNo n = g g 2
28 19 27 sylbi g ran FermatNo g 2
29 fmtnorn h ran FermatNo n 0 FermatNo n = h
30 22 adantr n 0 FermatNo n = h FermatNo n 2
31 eleq1 FermatNo n = h FermatNo n 2 h 2
32 31 adantl n 0 FermatNo n = h FermatNo n 2 h 2
33 30 32 mpbid n 0 FermatNo n = h h 2
34 33 rexlimiva n 0 FermatNo n = h h 2
35 29 34 sylbi h ran FermatNo h 2
36 eqid sup p | p g < = sup p | p g <
37 eqid sup p | p h < = sup p | p h <
38 36 37 prmdvdsfmtnof1lem1 g 2 h 2 sup p | p g < = sup p | p h < sup p | p g < sup p | p g < g sup p | p g < h
39 28 35 38 syl2an g ran FermatNo h ran FermatNo sup p | p g < = sup p | p h < sup p | p g < sup p | p g < g sup p | p g < h
40 prmdvdsfmtnof1lem2 g ran FermatNo h ran FermatNo sup p | p g < sup p | p g < g sup p | p g < h g = h
41 39 40 syld g ran FermatNo h ran FermatNo sup p | p g < = sup p | p h < g = h
42 18 41 sylbid g ran FermatNo h ran FermatNo F g = F h g = h
43 42 rgen2 g ran FermatNo h ran FermatNo F g = F h g = h
44 dff13 F : ran FermatNo 1-1 F : ran FermatNo g ran FermatNo h ran FermatNo F g = F h g = h
45 2 43 44 mpbir2an F : ran FermatNo 1-1