Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Union
Supremum and infimum
infexd
Next ⟩
eqinf
Metamath Proof Explorer
Ascii
Unicode
Theorem
infexd
Description:
An infimum is a set.
(Contributed by
AV
, 2-Sep-2020)
Ref
Expression
Hypothesis
infexd.1
⊢
φ
→
R
Or
A
Assertion
infexd
⊢
φ
→
sup
B
A
R
∈
V
Proof
Step
Hyp
Ref
Expression
1
infexd.1
⊢
φ
→
R
Or
A
2
df-inf
⊢
sup
B
A
R
=
sup
B
A
R
-1
3
cnvso
⊢
R
Or
A
↔
R
-1
Or
A
4
1
3
sylib
⊢
φ
→
R
-1
Or
A
5
4
supexd
⊢
φ
→
sup
B
A
R
-1
∈
V
6
2
5
eqeltrid
⊢
φ
→
sup
B
A
R
∈
V