Metamath Proof Explorer


Theorem infexd

Description: An infimum is a set. (Contributed by AV, 2-Sep-2020)

Ref Expression
Hypothesis infexd.1 φROrA
Assertion infexd φsupBARV

Proof

Step Hyp Ref Expression
1 infexd.1 φROrA
2 df-inf supBAR=supBAR-1
3 cnvso ROrAR-1OrA
4 1 3 sylib φR-1OrA
5 4 supexd φsupBAR-1V
6 2 5 eqeltrid φsupBARV