Metamath Proof Explorer


Theorem infexd

Description: An infimum is a set. (Contributed by AV, 2-Sep-2020)

Ref Expression
Hypothesis infexd.1 φ R Or A
Assertion infexd φ sup B A R V

Proof

Step Hyp Ref Expression
1 infexd.1 φ R Or A
2 df-inf sup B A R = sup B A R -1
3 cnvso R Or A R -1 Or A
4 1 3 sylib φ R -1 Or A
5 4 supexd φ sup B A R -1 V
6 2 5 eqeltrid φ sup B A R V