Step |
Hyp |
Ref |
Expression |
1 |
|
prmdvdsfmtnof.1 |
|- F = ( f e. ran FermatNo |-> inf ( { p e. Prime | p || f } , RR , < ) ) |
2 |
1
|
prmdvdsfmtnof |
|- F : ran FermatNo --> Prime |
3 |
|
breq2 |
|- ( f = g -> ( p || f <-> p || g ) ) |
4 |
3
|
rabbidv |
|- ( f = g -> { p e. Prime | p || f } = { p e. Prime | p || g } ) |
5 |
4
|
infeq1d |
|- ( f = g -> inf ( { p e. Prime | p || f } , RR , < ) = inf ( { p e. Prime | p || g } , RR , < ) ) |
6 |
|
id |
|- ( g e. ran FermatNo -> g e. ran FermatNo ) |
7 |
|
ltso |
|- < Or RR |
8 |
7
|
a1i |
|- ( g e. ran FermatNo -> < Or RR ) |
9 |
8
|
infexd |
|- ( g e. ran FermatNo -> inf ( { p e. Prime | p || g } , RR , < ) e. _V ) |
10 |
1 5 6 9
|
fvmptd3 |
|- ( g e. ran FermatNo -> ( F ` g ) = inf ( { p e. Prime | p || g } , RR , < ) ) |
11 |
|
breq2 |
|- ( f = h -> ( p || f <-> p || h ) ) |
12 |
11
|
rabbidv |
|- ( f = h -> { p e. Prime | p || f } = { p e. Prime | p || h } ) |
13 |
12
|
infeq1d |
|- ( f = h -> inf ( { p e. Prime | p || f } , RR , < ) = inf ( { p e. Prime | p || h } , RR , < ) ) |
14 |
|
id |
|- ( h e. ran FermatNo -> h e. ran FermatNo ) |
15 |
7
|
a1i |
|- ( h e. ran FermatNo -> < Or RR ) |
16 |
15
|
infexd |
|- ( h e. ran FermatNo -> inf ( { p e. Prime | p || h } , RR , < ) e. _V ) |
17 |
1 13 14 16
|
fvmptd3 |
|- ( h e. ran FermatNo -> ( F ` h ) = inf ( { p e. Prime | p || h } , RR , < ) ) |
18 |
10 17
|
eqeqan12d |
|- ( ( g e. ran FermatNo /\ h e. ran FermatNo ) -> ( ( F ` g ) = ( F ` h ) <-> inf ( { p e. Prime | p || g } , RR , < ) = inf ( { p e. Prime | p || h } , RR , < ) ) ) |
19 |
|
fmtnorn |
|- ( g e. ran FermatNo <-> E. n e. NN0 ( FermatNo ` n ) = g ) |
20 |
|
fmtnoge3 |
|- ( n e. NN0 -> ( FermatNo ` n ) e. ( ZZ>= ` 3 ) ) |
21 |
|
uzuzle23 |
|- ( ( FermatNo ` n ) e. ( ZZ>= ` 3 ) -> ( FermatNo ` n ) e. ( ZZ>= ` 2 ) ) |
22 |
20 21
|
syl |
|- ( n e. NN0 -> ( FermatNo ` n ) e. ( ZZ>= ` 2 ) ) |
23 |
22
|
adantr |
|- ( ( n e. NN0 /\ ( FermatNo ` n ) = g ) -> ( FermatNo ` n ) e. ( ZZ>= ` 2 ) ) |
24 |
|
eleq1 |
|- ( ( FermatNo ` n ) = g -> ( ( FermatNo ` n ) e. ( ZZ>= ` 2 ) <-> g e. ( ZZ>= ` 2 ) ) ) |
25 |
24
|
adantl |
|- ( ( n e. NN0 /\ ( FermatNo ` n ) = g ) -> ( ( FermatNo ` n ) e. ( ZZ>= ` 2 ) <-> g e. ( ZZ>= ` 2 ) ) ) |
26 |
23 25
|
mpbid |
|- ( ( n e. NN0 /\ ( FermatNo ` n ) = g ) -> g e. ( ZZ>= ` 2 ) ) |
27 |
26
|
rexlimiva |
|- ( E. n e. NN0 ( FermatNo ` n ) = g -> g e. ( ZZ>= ` 2 ) ) |
28 |
19 27
|
sylbi |
|- ( g e. ran FermatNo -> g e. ( ZZ>= ` 2 ) ) |
29 |
|
fmtnorn |
|- ( h e. ran FermatNo <-> E. n e. NN0 ( FermatNo ` n ) = h ) |
30 |
22
|
adantr |
|- ( ( n e. NN0 /\ ( FermatNo ` n ) = h ) -> ( FermatNo ` n ) e. ( ZZ>= ` 2 ) ) |
31 |
|
eleq1 |
|- ( ( FermatNo ` n ) = h -> ( ( FermatNo ` n ) e. ( ZZ>= ` 2 ) <-> h e. ( ZZ>= ` 2 ) ) ) |
32 |
31
|
adantl |
|- ( ( n e. NN0 /\ ( FermatNo ` n ) = h ) -> ( ( FermatNo ` n ) e. ( ZZ>= ` 2 ) <-> h e. ( ZZ>= ` 2 ) ) ) |
33 |
30 32
|
mpbid |
|- ( ( n e. NN0 /\ ( FermatNo ` n ) = h ) -> h e. ( ZZ>= ` 2 ) ) |
34 |
33
|
rexlimiva |
|- ( E. n e. NN0 ( FermatNo ` n ) = h -> h e. ( ZZ>= ` 2 ) ) |
35 |
29 34
|
sylbi |
|- ( h e. ran FermatNo -> h e. ( ZZ>= ` 2 ) ) |
36 |
|
eqid |
|- inf ( { p e. Prime | p || g } , RR , < ) = inf ( { p e. Prime | p || g } , RR , < ) |
37 |
|
eqid |
|- inf ( { p e. Prime | p || h } , RR , < ) = inf ( { p e. Prime | p || h } , RR , < ) |
38 |
36 37
|
prmdvdsfmtnof1lem1 |
|- ( ( g e. ( ZZ>= ` 2 ) /\ h e. ( ZZ>= ` 2 ) ) -> ( inf ( { p e. Prime | p || g } , RR , < ) = inf ( { p e. Prime | p || h } , RR , < ) -> ( inf ( { p e. Prime | p || g } , RR , < ) e. Prime /\ inf ( { p e. Prime | p || g } , RR , < ) || g /\ inf ( { p e. Prime | p || g } , RR , < ) || h ) ) ) |
39 |
28 35 38
|
syl2an |
|- ( ( g e. ran FermatNo /\ h e. ran FermatNo ) -> ( inf ( { p e. Prime | p || g } , RR , < ) = inf ( { p e. Prime | p || h } , RR , < ) -> ( inf ( { p e. Prime | p || g } , RR , < ) e. Prime /\ inf ( { p e. Prime | p || g } , RR , < ) || g /\ inf ( { p e. Prime | p || g } , RR , < ) || h ) ) ) |
40 |
|
prmdvdsfmtnof1lem2 |
|- ( ( g e. ran FermatNo /\ h e. ran FermatNo ) -> ( ( inf ( { p e. Prime | p || g } , RR , < ) e. Prime /\ inf ( { p e. Prime | p || g } , RR , < ) || g /\ inf ( { p e. Prime | p || g } , RR , < ) || h ) -> g = h ) ) |
41 |
39 40
|
syld |
|- ( ( g e. ran FermatNo /\ h e. ran FermatNo ) -> ( inf ( { p e. Prime | p || g } , RR , < ) = inf ( { p e. Prime | p || h } , RR , < ) -> g = h ) ) |
42 |
18 41
|
sylbid |
|- ( ( g e. ran FermatNo /\ h e. ran FermatNo ) -> ( ( F ` g ) = ( F ` h ) -> g = h ) ) |
43 |
42
|
rgen2 |
|- A. g e. ran FermatNo A. h e. ran FermatNo ( ( F ` g ) = ( F ` h ) -> g = h ) |
44 |
|
dff13 |
|- ( F : ran FermatNo -1-1-> Prime <-> ( F : ran FermatNo --> Prime /\ A. g e. ran FermatNo A. h e. ran FermatNo ( ( F ` g ) = ( F ` h ) -> g = h ) ) ) |
45 |
2 43 44
|
mpbir2an |
|- F : ran FermatNo -1-1-> Prime |