Step |
Hyp |
Ref |
Expression |
1 |
|
prmdvdsfmtnof.1 |
|- F = ( f e. ran FermatNo |-> inf ( { p e. Prime | p || f } , RR , < ) ) |
2 |
|
fmtnorn |
|- ( f e. ran FermatNo <-> E. n e. NN0 ( FermatNo ` n ) = f ) |
3 |
|
ltso |
|- < Or RR |
4 |
3
|
a1i |
|- ( ( n e. NN0 /\ ( FermatNo ` n ) = f ) -> < Or RR ) |
5 |
|
fmtnoge3 |
|- ( n e. NN0 -> ( FermatNo ` n ) e. ( ZZ>= ` 3 ) ) |
6 |
5
|
adantr |
|- ( ( n e. NN0 /\ ( FermatNo ` n ) = f ) -> ( FermatNo ` n ) e. ( ZZ>= ` 3 ) ) |
7 |
|
eleq1 |
|- ( ( FermatNo ` n ) = f -> ( ( FermatNo ` n ) e. ( ZZ>= ` 3 ) <-> f e. ( ZZ>= ` 3 ) ) ) |
8 |
7
|
adantl |
|- ( ( n e. NN0 /\ ( FermatNo ` n ) = f ) -> ( ( FermatNo ` n ) e. ( ZZ>= ` 3 ) <-> f e. ( ZZ>= ` 3 ) ) ) |
9 |
6 8
|
mpbid |
|- ( ( n e. NN0 /\ ( FermatNo ` n ) = f ) -> f e. ( ZZ>= ` 3 ) ) |
10 |
|
uzuzle23 |
|- ( f e. ( ZZ>= ` 3 ) -> f e. ( ZZ>= ` 2 ) ) |
11 |
9 10
|
syl |
|- ( ( n e. NN0 /\ ( FermatNo ` n ) = f ) -> f e. ( ZZ>= ` 2 ) ) |
12 |
|
eluz2nn |
|- ( f e. ( ZZ>= ` 2 ) -> f e. NN ) |
13 |
|
prmdvdsfi |
|- ( f e. NN -> { p e. Prime | p || f } e. Fin ) |
14 |
11 12 13
|
3syl |
|- ( ( n e. NN0 /\ ( FermatNo ` n ) = f ) -> { p e. Prime | p || f } e. Fin ) |
15 |
|
exprmfct |
|- ( f e. ( ZZ>= ` 2 ) -> E. p e. Prime p || f ) |
16 |
11 15
|
syl |
|- ( ( n e. NN0 /\ ( FermatNo ` n ) = f ) -> E. p e. Prime p || f ) |
17 |
|
rabn0 |
|- ( { p e. Prime | p || f } =/= (/) <-> E. p e. Prime p || f ) |
18 |
16 17
|
sylibr |
|- ( ( n e. NN0 /\ ( FermatNo ` n ) = f ) -> { p e. Prime | p || f } =/= (/) ) |
19 |
|
ssrab2 |
|- { p e. Prime | p || f } C_ Prime |
20 |
|
prmssnn |
|- Prime C_ NN |
21 |
|
nnssre |
|- NN C_ RR |
22 |
20 21
|
sstri |
|- Prime C_ RR |
23 |
19 22
|
sstri |
|- { p e. Prime | p || f } C_ RR |
24 |
23
|
a1i |
|- ( ( n e. NN0 /\ ( FermatNo ` n ) = f ) -> { p e. Prime | p || f } C_ RR ) |
25 |
|
fiinfcl |
|- ( ( < Or RR /\ ( { p e. Prime | p || f } e. Fin /\ { p e. Prime | p || f } =/= (/) /\ { p e. Prime | p || f } C_ RR ) ) -> inf ( { p e. Prime | p || f } , RR , < ) e. { p e. Prime | p || f } ) |
26 |
19 25
|
sselid |
|- ( ( < Or RR /\ ( { p e. Prime | p || f } e. Fin /\ { p e. Prime | p || f } =/= (/) /\ { p e. Prime | p || f } C_ RR ) ) -> inf ( { p e. Prime | p || f } , RR , < ) e. Prime ) |
27 |
4 14 18 24 26
|
syl13anc |
|- ( ( n e. NN0 /\ ( FermatNo ` n ) = f ) -> inf ( { p e. Prime | p || f } , RR , < ) e. Prime ) |
28 |
27
|
rexlimiva |
|- ( E. n e. NN0 ( FermatNo ` n ) = f -> inf ( { p e. Prime | p || f } , RR , < ) e. Prime ) |
29 |
2 28
|
sylbi |
|- ( f e. ran FermatNo -> inf ( { p e. Prime | p || f } , RR , < ) e. Prime ) |
30 |
1 29
|
fmpti |
|- F : ran FermatNo --> Prime |