| Step |
Hyp |
Ref |
Expression |
| 1 |
|
prmdvdsfmtnof.1 |
⊢ 𝐹 = ( 𝑓 ∈ ran FermatNo ↦ inf ( { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑓 } , ℝ , < ) ) |
| 2 |
|
fmtnorn |
⊢ ( 𝑓 ∈ ran FermatNo ↔ ∃ 𝑛 ∈ ℕ0 ( FermatNo ‘ 𝑛 ) = 𝑓 ) |
| 3 |
|
ltso |
⊢ < Or ℝ |
| 4 |
3
|
a1i |
⊢ ( ( 𝑛 ∈ ℕ0 ∧ ( FermatNo ‘ 𝑛 ) = 𝑓 ) → < Or ℝ ) |
| 5 |
|
fmtnoge3 |
⊢ ( 𝑛 ∈ ℕ0 → ( FermatNo ‘ 𝑛 ) ∈ ( ℤ≥ ‘ 3 ) ) |
| 6 |
5
|
adantr |
⊢ ( ( 𝑛 ∈ ℕ0 ∧ ( FermatNo ‘ 𝑛 ) = 𝑓 ) → ( FermatNo ‘ 𝑛 ) ∈ ( ℤ≥ ‘ 3 ) ) |
| 7 |
|
eleq1 |
⊢ ( ( FermatNo ‘ 𝑛 ) = 𝑓 → ( ( FermatNo ‘ 𝑛 ) ∈ ( ℤ≥ ‘ 3 ) ↔ 𝑓 ∈ ( ℤ≥ ‘ 3 ) ) ) |
| 8 |
7
|
adantl |
⊢ ( ( 𝑛 ∈ ℕ0 ∧ ( FermatNo ‘ 𝑛 ) = 𝑓 ) → ( ( FermatNo ‘ 𝑛 ) ∈ ( ℤ≥ ‘ 3 ) ↔ 𝑓 ∈ ( ℤ≥ ‘ 3 ) ) ) |
| 9 |
6 8
|
mpbid |
⊢ ( ( 𝑛 ∈ ℕ0 ∧ ( FermatNo ‘ 𝑛 ) = 𝑓 ) → 𝑓 ∈ ( ℤ≥ ‘ 3 ) ) |
| 10 |
|
uzuzle23 |
⊢ ( 𝑓 ∈ ( ℤ≥ ‘ 3 ) → 𝑓 ∈ ( ℤ≥ ‘ 2 ) ) |
| 11 |
9 10
|
syl |
⊢ ( ( 𝑛 ∈ ℕ0 ∧ ( FermatNo ‘ 𝑛 ) = 𝑓 ) → 𝑓 ∈ ( ℤ≥ ‘ 2 ) ) |
| 12 |
|
eluz2nn |
⊢ ( 𝑓 ∈ ( ℤ≥ ‘ 2 ) → 𝑓 ∈ ℕ ) |
| 13 |
|
prmdvdsfi |
⊢ ( 𝑓 ∈ ℕ → { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑓 } ∈ Fin ) |
| 14 |
11 12 13
|
3syl |
⊢ ( ( 𝑛 ∈ ℕ0 ∧ ( FermatNo ‘ 𝑛 ) = 𝑓 ) → { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑓 } ∈ Fin ) |
| 15 |
|
exprmfct |
⊢ ( 𝑓 ∈ ( ℤ≥ ‘ 2 ) → ∃ 𝑝 ∈ ℙ 𝑝 ∥ 𝑓 ) |
| 16 |
11 15
|
syl |
⊢ ( ( 𝑛 ∈ ℕ0 ∧ ( FermatNo ‘ 𝑛 ) = 𝑓 ) → ∃ 𝑝 ∈ ℙ 𝑝 ∥ 𝑓 ) |
| 17 |
|
rabn0 |
⊢ ( { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑓 } ≠ ∅ ↔ ∃ 𝑝 ∈ ℙ 𝑝 ∥ 𝑓 ) |
| 18 |
16 17
|
sylibr |
⊢ ( ( 𝑛 ∈ ℕ0 ∧ ( FermatNo ‘ 𝑛 ) = 𝑓 ) → { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑓 } ≠ ∅ ) |
| 19 |
|
ssrab2 |
⊢ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑓 } ⊆ ℙ |
| 20 |
|
prmssnn |
⊢ ℙ ⊆ ℕ |
| 21 |
|
nnssre |
⊢ ℕ ⊆ ℝ |
| 22 |
20 21
|
sstri |
⊢ ℙ ⊆ ℝ |
| 23 |
19 22
|
sstri |
⊢ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑓 } ⊆ ℝ |
| 24 |
23
|
a1i |
⊢ ( ( 𝑛 ∈ ℕ0 ∧ ( FermatNo ‘ 𝑛 ) = 𝑓 ) → { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑓 } ⊆ ℝ ) |
| 25 |
|
fiinfcl |
⊢ ( ( < Or ℝ ∧ ( { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑓 } ∈ Fin ∧ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑓 } ≠ ∅ ∧ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑓 } ⊆ ℝ ) ) → inf ( { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑓 } , ℝ , < ) ∈ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑓 } ) |
| 26 |
19 25
|
sselid |
⊢ ( ( < Or ℝ ∧ ( { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑓 } ∈ Fin ∧ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑓 } ≠ ∅ ∧ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑓 } ⊆ ℝ ) ) → inf ( { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑓 } , ℝ , < ) ∈ ℙ ) |
| 27 |
4 14 18 24 26
|
syl13anc |
⊢ ( ( 𝑛 ∈ ℕ0 ∧ ( FermatNo ‘ 𝑛 ) = 𝑓 ) → inf ( { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑓 } , ℝ , < ) ∈ ℙ ) |
| 28 |
27
|
rexlimiva |
⊢ ( ∃ 𝑛 ∈ ℕ0 ( FermatNo ‘ 𝑛 ) = 𝑓 → inf ( { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑓 } , ℝ , < ) ∈ ℙ ) |
| 29 |
2 28
|
sylbi |
⊢ ( 𝑓 ∈ ran FermatNo → inf ( { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑓 } , ℝ , < ) ∈ ℙ ) |
| 30 |
1 29
|
fmpti |
⊢ 𝐹 : ran FermatNo ⟶ ℙ |