Description: The set of prime divisors of a number is a finite set. (Contributed by Mario Carneiro, 7-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | prmdvdsfi | ⊢ ( 𝐴 ∈ ℕ → { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ∈ Fin ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fzfi | ⊢ ( 1 ... 𝐴 ) ∈ Fin | |
| 2 | prmssnn | ⊢ ℙ ⊆ ℕ | |
| 3 | rabss2 | ⊢ ( ℙ ⊆ ℕ → { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ⊆ { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐴 } ) | |
| 4 | 2 3 | ax-mp | ⊢ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ⊆ { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐴 } |
| 5 | dvdsssfz1 | ⊢ ( 𝐴 ∈ ℕ → { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐴 } ⊆ ( 1 ... 𝐴 ) ) | |
| 6 | 4 5 | sstrid | ⊢ ( 𝐴 ∈ ℕ → { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ⊆ ( 1 ... 𝐴 ) ) |
| 7 | ssfi | ⊢ ( ( ( 1 ... 𝐴 ) ∈ Fin ∧ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ⊆ ( 1 ... 𝐴 ) ) → { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ∈ Fin ) | |
| 8 | 1 6 7 | sylancr | ⊢ ( 𝐴 ∈ ℕ → { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ∈ Fin ) |