Step |
Hyp |
Ref |
Expression |
1 |
|
fmtnorn |
|- ( F e. ran FermatNo <-> E. n e. NN0 ( FermatNo ` n ) = F ) |
2 |
|
fmtnorn |
|- ( G e. ran FermatNo <-> E. m e. NN0 ( FermatNo ` m ) = G ) |
3 |
|
2a1 |
|- ( F = G -> ( ( FermatNo ` n ) = F -> ( ( I e. Prime /\ I || F /\ I || G ) -> F = G ) ) ) |
4 |
3
|
2a1d |
|- ( F = G -> ( ( n e. NN0 /\ m e. NN0 ) -> ( ( FermatNo ` m ) = G -> ( ( FermatNo ` n ) = F -> ( ( I e. Prime /\ I || F /\ I || G ) -> F = G ) ) ) ) ) |
5 |
|
fmtnonn |
|- ( n e. NN0 -> ( FermatNo ` n ) e. NN ) |
6 |
5
|
ad2antrl |
|- ( ( -. F = G /\ ( n e. NN0 /\ m e. NN0 ) ) -> ( FermatNo ` n ) e. NN ) |
7 |
6
|
adantr |
|- ( ( ( -. F = G /\ ( n e. NN0 /\ m e. NN0 ) ) /\ ( ( FermatNo ` m ) = G /\ ( FermatNo ` n ) = F ) ) -> ( FermatNo ` n ) e. NN ) |
8 |
|
eleq1 |
|- ( ( FermatNo ` n ) = F -> ( ( FermatNo ` n ) e. NN <-> F e. NN ) ) |
9 |
8
|
ad2antll |
|- ( ( ( -. F = G /\ ( n e. NN0 /\ m e. NN0 ) ) /\ ( ( FermatNo ` m ) = G /\ ( FermatNo ` n ) = F ) ) -> ( ( FermatNo ` n ) e. NN <-> F e. NN ) ) |
10 |
7 9
|
mpbid |
|- ( ( ( -. F = G /\ ( n e. NN0 /\ m e. NN0 ) ) /\ ( ( FermatNo ` m ) = G /\ ( FermatNo ` n ) = F ) ) -> F e. NN ) |
11 |
|
fmtnonn |
|- ( m e. NN0 -> ( FermatNo ` m ) e. NN ) |
12 |
11
|
ad2antll |
|- ( ( -. F = G /\ ( n e. NN0 /\ m e. NN0 ) ) -> ( FermatNo ` m ) e. NN ) |
13 |
12
|
adantr |
|- ( ( ( -. F = G /\ ( n e. NN0 /\ m e. NN0 ) ) /\ ( ( FermatNo ` m ) = G /\ ( FermatNo ` n ) = F ) ) -> ( FermatNo ` m ) e. NN ) |
14 |
|
eleq1 |
|- ( ( FermatNo ` m ) = G -> ( ( FermatNo ` m ) e. NN <-> G e. NN ) ) |
15 |
14
|
ad2antrl |
|- ( ( ( -. F = G /\ ( n e. NN0 /\ m e. NN0 ) ) /\ ( ( FermatNo ` m ) = G /\ ( FermatNo ` n ) = F ) ) -> ( ( FermatNo ` m ) e. NN <-> G e. NN ) ) |
16 |
13 15
|
mpbid |
|- ( ( ( -. F = G /\ ( n e. NN0 /\ m e. NN0 ) ) /\ ( ( FermatNo ` m ) = G /\ ( FermatNo ` n ) = F ) ) -> G e. NN ) |
17 |
|
simpll |
|- ( ( ( n e. NN0 /\ m e. NN0 ) /\ -. ( FermatNo ` n ) = ( FermatNo ` m ) ) -> n e. NN0 ) |
18 |
|
simplr |
|- ( ( ( n e. NN0 /\ m e. NN0 ) /\ -. ( FermatNo ` n ) = ( FermatNo ` m ) ) -> m e. NN0 ) |
19 |
|
fveq2 |
|- ( n = m -> ( FermatNo ` n ) = ( FermatNo ` m ) ) |
20 |
19
|
con3i |
|- ( -. ( FermatNo ` n ) = ( FermatNo ` m ) -> -. n = m ) |
21 |
20
|
adantl |
|- ( ( ( n e. NN0 /\ m e. NN0 ) /\ -. ( FermatNo ` n ) = ( FermatNo ` m ) ) -> -. n = m ) |
22 |
21
|
neqned |
|- ( ( ( n e. NN0 /\ m e. NN0 ) /\ -. ( FermatNo ` n ) = ( FermatNo ` m ) ) -> n =/= m ) |
23 |
|
goldbachth |
|- ( ( n e. NN0 /\ m e. NN0 /\ n =/= m ) -> ( ( FermatNo ` n ) gcd ( FermatNo ` m ) ) = 1 ) |
24 |
17 18 22 23
|
syl3anc |
|- ( ( ( n e. NN0 /\ m e. NN0 ) /\ -. ( FermatNo ` n ) = ( FermatNo ` m ) ) -> ( ( FermatNo ` n ) gcd ( FermatNo ` m ) ) = 1 ) |
25 |
24
|
ex |
|- ( ( n e. NN0 /\ m e. NN0 ) -> ( -. ( FermatNo ` n ) = ( FermatNo ` m ) -> ( ( FermatNo ` n ) gcd ( FermatNo ` m ) ) = 1 ) ) |
26 |
|
eqeq12 |
|- ( ( ( FermatNo ` n ) = F /\ ( FermatNo ` m ) = G ) -> ( ( FermatNo ` n ) = ( FermatNo ` m ) <-> F = G ) ) |
27 |
26
|
notbid |
|- ( ( ( FermatNo ` n ) = F /\ ( FermatNo ` m ) = G ) -> ( -. ( FermatNo ` n ) = ( FermatNo ` m ) <-> -. F = G ) ) |
28 |
|
oveq12 |
|- ( ( ( FermatNo ` n ) = F /\ ( FermatNo ` m ) = G ) -> ( ( FermatNo ` n ) gcd ( FermatNo ` m ) ) = ( F gcd G ) ) |
29 |
28
|
eqeq1d |
|- ( ( ( FermatNo ` n ) = F /\ ( FermatNo ` m ) = G ) -> ( ( ( FermatNo ` n ) gcd ( FermatNo ` m ) ) = 1 <-> ( F gcd G ) = 1 ) ) |
30 |
27 29
|
imbi12d |
|- ( ( ( FermatNo ` n ) = F /\ ( FermatNo ` m ) = G ) -> ( ( -. ( FermatNo ` n ) = ( FermatNo ` m ) -> ( ( FermatNo ` n ) gcd ( FermatNo ` m ) ) = 1 ) <-> ( -. F = G -> ( F gcd G ) = 1 ) ) ) |
31 |
30
|
ancoms |
|- ( ( ( FermatNo ` m ) = G /\ ( FermatNo ` n ) = F ) -> ( ( -. ( FermatNo ` n ) = ( FermatNo ` m ) -> ( ( FermatNo ` n ) gcd ( FermatNo ` m ) ) = 1 ) <-> ( -. F = G -> ( F gcd G ) = 1 ) ) ) |
32 |
25 31
|
syl5ibcom |
|- ( ( n e. NN0 /\ m e. NN0 ) -> ( ( ( FermatNo ` m ) = G /\ ( FermatNo ` n ) = F ) -> ( -. F = G -> ( F gcd G ) = 1 ) ) ) |
33 |
32
|
com23 |
|- ( ( n e. NN0 /\ m e. NN0 ) -> ( -. F = G -> ( ( ( FermatNo ` m ) = G /\ ( FermatNo ` n ) = F ) -> ( F gcd G ) = 1 ) ) ) |
34 |
33
|
impcom |
|- ( ( -. F = G /\ ( n e. NN0 /\ m e. NN0 ) ) -> ( ( ( FermatNo ` m ) = G /\ ( FermatNo ` n ) = F ) -> ( F gcd G ) = 1 ) ) |
35 |
34
|
imp |
|- ( ( ( -. F = G /\ ( n e. NN0 /\ m e. NN0 ) ) /\ ( ( FermatNo ` m ) = G /\ ( FermatNo ` n ) = F ) ) -> ( F gcd G ) = 1 ) |
36 |
|
prmnn |
|- ( I e. Prime -> I e. NN ) |
37 |
|
coprmdvds1 |
|- ( ( F e. NN /\ G e. NN /\ ( F gcd G ) = 1 ) -> ( ( I e. NN /\ I || F /\ I || G ) -> I = 1 ) ) |
38 |
37
|
imp |
|- ( ( ( F e. NN /\ G e. NN /\ ( F gcd G ) = 1 ) /\ ( I e. NN /\ I || F /\ I || G ) ) -> I = 1 ) |
39 |
36 38
|
syl3anr1 |
|- ( ( ( F e. NN /\ G e. NN /\ ( F gcd G ) = 1 ) /\ ( I e. Prime /\ I || F /\ I || G ) ) -> I = 1 ) |
40 |
|
eleq1 |
|- ( I = 1 -> ( I e. Prime <-> 1 e. Prime ) ) |
41 |
|
1nprm |
|- -. 1 e. Prime |
42 |
41
|
pm2.21i |
|- ( 1 e. Prime -> F = G ) |
43 |
40 42
|
syl6bi |
|- ( I = 1 -> ( I e. Prime -> F = G ) ) |
44 |
43
|
com12 |
|- ( I e. Prime -> ( I = 1 -> F = G ) ) |
45 |
44
|
a1d |
|- ( I e. Prime -> ( ( F e. NN /\ G e. NN /\ ( F gcd G ) = 1 ) -> ( I = 1 -> F = G ) ) ) |
46 |
45
|
3ad2ant1 |
|- ( ( I e. Prime /\ I || F /\ I || G ) -> ( ( F e. NN /\ G e. NN /\ ( F gcd G ) = 1 ) -> ( I = 1 -> F = G ) ) ) |
47 |
46
|
impcom |
|- ( ( ( F e. NN /\ G e. NN /\ ( F gcd G ) = 1 ) /\ ( I e. Prime /\ I || F /\ I || G ) ) -> ( I = 1 -> F = G ) ) |
48 |
39 47
|
mpd |
|- ( ( ( F e. NN /\ G e. NN /\ ( F gcd G ) = 1 ) /\ ( I e. Prime /\ I || F /\ I || G ) ) -> F = G ) |
49 |
48
|
ex |
|- ( ( F e. NN /\ G e. NN /\ ( F gcd G ) = 1 ) -> ( ( I e. Prime /\ I || F /\ I || G ) -> F = G ) ) |
50 |
10 16 35 49
|
syl3anc |
|- ( ( ( -. F = G /\ ( n e. NN0 /\ m e. NN0 ) ) /\ ( ( FermatNo ` m ) = G /\ ( FermatNo ` n ) = F ) ) -> ( ( I e. Prime /\ I || F /\ I || G ) -> F = G ) ) |
51 |
50
|
exp43 |
|- ( -. F = G -> ( ( n e. NN0 /\ m e. NN0 ) -> ( ( FermatNo ` m ) = G -> ( ( FermatNo ` n ) = F -> ( ( I e. Prime /\ I || F /\ I || G ) -> F = G ) ) ) ) ) |
52 |
4 51
|
pm2.61i |
|- ( ( n e. NN0 /\ m e. NN0 ) -> ( ( FermatNo ` m ) = G -> ( ( FermatNo ` n ) = F -> ( ( I e. Prime /\ I || F /\ I || G ) -> F = G ) ) ) ) |
53 |
52
|
rexlimdva |
|- ( n e. NN0 -> ( E. m e. NN0 ( FermatNo ` m ) = G -> ( ( FermatNo ` n ) = F -> ( ( I e. Prime /\ I || F /\ I || G ) -> F = G ) ) ) ) |
54 |
53
|
com23 |
|- ( n e. NN0 -> ( ( FermatNo ` n ) = F -> ( E. m e. NN0 ( FermatNo ` m ) = G -> ( ( I e. Prime /\ I || F /\ I || G ) -> F = G ) ) ) ) |
55 |
54
|
rexlimiv |
|- ( E. n e. NN0 ( FermatNo ` n ) = F -> ( E. m e. NN0 ( FermatNo ` m ) = G -> ( ( I e. Prime /\ I || F /\ I || G ) -> F = G ) ) ) |
56 |
55
|
imp |
|- ( ( E. n e. NN0 ( FermatNo ` n ) = F /\ E. m e. NN0 ( FermatNo ` m ) = G ) -> ( ( I e. Prime /\ I || F /\ I || G ) -> F = G ) ) |
57 |
1 2 56
|
syl2anb |
|- ( ( F e. ran FermatNo /\ G e. ran FermatNo ) -> ( ( I e. Prime /\ I || F /\ I || G ) -> F = G ) ) |