Step |
Hyp |
Ref |
Expression |
1 |
|
nn0re |
|- ( N e. NN0 -> N e. RR ) |
2 |
|
nn0re |
|- ( M e. NN0 -> M e. RR ) |
3 |
|
lttri4 |
|- ( ( N e. RR /\ M e. RR ) -> ( N < M \/ N = M \/ M < N ) ) |
4 |
1 2 3
|
syl2an |
|- ( ( N e. NN0 /\ M e. NN0 ) -> ( N < M \/ N = M \/ M < N ) ) |
5 |
4
|
3adant3 |
|- ( ( N e. NN0 /\ M e. NN0 /\ N =/= M ) -> ( N < M \/ N = M \/ M < N ) ) |
6 |
|
fmtnonn |
|- ( N e. NN0 -> ( FermatNo ` N ) e. NN ) |
7 |
6
|
nnzd |
|- ( N e. NN0 -> ( FermatNo ` N ) e. ZZ ) |
8 |
|
fmtnonn |
|- ( M e. NN0 -> ( FermatNo ` M ) e. NN ) |
9 |
8
|
nnzd |
|- ( M e. NN0 -> ( FermatNo ` M ) e. ZZ ) |
10 |
|
gcdcom |
|- ( ( ( FermatNo ` N ) e. ZZ /\ ( FermatNo ` M ) e. ZZ ) -> ( ( FermatNo ` N ) gcd ( FermatNo ` M ) ) = ( ( FermatNo ` M ) gcd ( FermatNo ` N ) ) ) |
11 |
7 9 10
|
syl2anr |
|- ( ( M e. NN0 /\ N e. NN0 ) -> ( ( FermatNo ` N ) gcd ( FermatNo ` M ) ) = ( ( FermatNo ` M ) gcd ( FermatNo ` N ) ) ) |
12 |
11
|
3adant3 |
|- ( ( M e. NN0 /\ N e. NN0 /\ N < M ) -> ( ( FermatNo ` N ) gcd ( FermatNo ` M ) ) = ( ( FermatNo ` M ) gcd ( FermatNo ` N ) ) ) |
13 |
|
goldbachthlem2 |
|- ( ( M e. NN0 /\ N e. NN0 /\ N < M ) -> ( ( FermatNo ` M ) gcd ( FermatNo ` N ) ) = 1 ) |
14 |
12 13
|
eqtrd |
|- ( ( M e. NN0 /\ N e. NN0 /\ N < M ) -> ( ( FermatNo ` N ) gcd ( FermatNo ` M ) ) = 1 ) |
15 |
14
|
3exp |
|- ( M e. NN0 -> ( N e. NN0 -> ( N < M -> ( ( FermatNo ` N ) gcd ( FermatNo ` M ) ) = 1 ) ) ) |
16 |
15
|
impcom |
|- ( ( N e. NN0 /\ M e. NN0 ) -> ( N < M -> ( ( FermatNo ` N ) gcd ( FermatNo ` M ) ) = 1 ) ) |
17 |
16
|
3adant3 |
|- ( ( N e. NN0 /\ M e. NN0 /\ N =/= M ) -> ( N < M -> ( ( FermatNo ` N ) gcd ( FermatNo ` M ) ) = 1 ) ) |
18 |
|
eqneqall |
|- ( N = M -> ( N =/= M -> ( ( FermatNo ` N ) gcd ( FermatNo ` M ) ) = 1 ) ) |
19 |
18
|
com12 |
|- ( N =/= M -> ( N = M -> ( ( FermatNo ` N ) gcd ( FermatNo ` M ) ) = 1 ) ) |
20 |
19
|
3ad2ant3 |
|- ( ( N e. NN0 /\ M e. NN0 /\ N =/= M ) -> ( N = M -> ( ( FermatNo ` N ) gcd ( FermatNo ` M ) ) = 1 ) ) |
21 |
|
goldbachthlem2 |
|- ( ( N e. NN0 /\ M e. NN0 /\ M < N ) -> ( ( FermatNo ` N ) gcd ( FermatNo ` M ) ) = 1 ) |
22 |
21
|
3expia |
|- ( ( N e. NN0 /\ M e. NN0 ) -> ( M < N -> ( ( FermatNo ` N ) gcd ( FermatNo ` M ) ) = 1 ) ) |
23 |
22
|
3adant3 |
|- ( ( N e. NN0 /\ M e. NN0 /\ N =/= M ) -> ( M < N -> ( ( FermatNo ` N ) gcd ( FermatNo ` M ) ) = 1 ) ) |
24 |
17 20 23
|
3jaod |
|- ( ( N e. NN0 /\ M e. NN0 /\ N =/= M ) -> ( ( N < M \/ N = M \/ M < N ) -> ( ( FermatNo ` N ) gcd ( FermatNo ` M ) ) = 1 ) ) |
25 |
5 24
|
mpd |
|- ( ( N e. NN0 /\ M e. NN0 /\ N =/= M ) -> ( ( FermatNo ` N ) gcd ( FermatNo ` M ) ) = 1 ) |