| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nn0re |
|- ( N e. NN0 -> N e. RR ) |
| 2 |
|
nn0re |
|- ( M e. NN0 -> M e. RR ) |
| 3 |
|
lttri4 |
|- ( ( N e. RR /\ M e. RR ) -> ( N < M \/ N = M \/ M < N ) ) |
| 4 |
1 2 3
|
syl2an |
|- ( ( N e. NN0 /\ M e. NN0 ) -> ( N < M \/ N = M \/ M < N ) ) |
| 5 |
4
|
3adant3 |
|- ( ( N e. NN0 /\ M e. NN0 /\ N =/= M ) -> ( N < M \/ N = M \/ M < N ) ) |
| 6 |
|
fmtnonn |
|- ( N e. NN0 -> ( FermatNo ` N ) e. NN ) |
| 7 |
6
|
nnzd |
|- ( N e. NN0 -> ( FermatNo ` N ) e. ZZ ) |
| 8 |
|
fmtnonn |
|- ( M e. NN0 -> ( FermatNo ` M ) e. NN ) |
| 9 |
8
|
nnzd |
|- ( M e. NN0 -> ( FermatNo ` M ) e. ZZ ) |
| 10 |
|
gcdcom |
|- ( ( ( FermatNo ` N ) e. ZZ /\ ( FermatNo ` M ) e. ZZ ) -> ( ( FermatNo ` N ) gcd ( FermatNo ` M ) ) = ( ( FermatNo ` M ) gcd ( FermatNo ` N ) ) ) |
| 11 |
7 9 10
|
syl2anr |
|- ( ( M e. NN0 /\ N e. NN0 ) -> ( ( FermatNo ` N ) gcd ( FermatNo ` M ) ) = ( ( FermatNo ` M ) gcd ( FermatNo ` N ) ) ) |
| 12 |
11
|
3adant3 |
|- ( ( M e. NN0 /\ N e. NN0 /\ N < M ) -> ( ( FermatNo ` N ) gcd ( FermatNo ` M ) ) = ( ( FermatNo ` M ) gcd ( FermatNo ` N ) ) ) |
| 13 |
|
goldbachthlem2 |
|- ( ( M e. NN0 /\ N e. NN0 /\ N < M ) -> ( ( FermatNo ` M ) gcd ( FermatNo ` N ) ) = 1 ) |
| 14 |
12 13
|
eqtrd |
|- ( ( M e. NN0 /\ N e. NN0 /\ N < M ) -> ( ( FermatNo ` N ) gcd ( FermatNo ` M ) ) = 1 ) |
| 15 |
14
|
3exp |
|- ( M e. NN0 -> ( N e. NN0 -> ( N < M -> ( ( FermatNo ` N ) gcd ( FermatNo ` M ) ) = 1 ) ) ) |
| 16 |
15
|
impcom |
|- ( ( N e. NN0 /\ M e. NN0 ) -> ( N < M -> ( ( FermatNo ` N ) gcd ( FermatNo ` M ) ) = 1 ) ) |
| 17 |
16
|
3adant3 |
|- ( ( N e. NN0 /\ M e. NN0 /\ N =/= M ) -> ( N < M -> ( ( FermatNo ` N ) gcd ( FermatNo ` M ) ) = 1 ) ) |
| 18 |
|
eqneqall |
|- ( N = M -> ( N =/= M -> ( ( FermatNo ` N ) gcd ( FermatNo ` M ) ) = 1 ) ) |
| 19 |
18
|
com12 |
|- ( N =/= M -> ( N = M -> ( ( FermatNo ` N ) gcd ( FermatNo ` M ) ) = 1 ) ) |
| 20 |
19
|
3ad2ant3 |
|- ( ( N e. NN0 /\ M e. NN0 /\ N =/= M ) -> ( N = M -> ( ( FermatNo ` N ) gcd ( FermatNo ` M ) ) = 1 ) ) |
| 21 |
|
goldbachthlem2 |
|- ( ( N e. NN0 /\ M e. NN0 /\ M < N ) -> ( ( FermatNo ` N ) gcd ( FermatNo ` M ) ) = 1 ) |
| 22 |
21
|
3expia |
|- ( ( N e. NN0 /\ M e. NN0 ) -> ( M < N -> ( ( FermatNo ` N ) gcd ( FermatNo ` M ) ) = 1 ) ) |
| 23 |
22
|
3adant3 |
|- ( ( N e. NN0 /\ M e. NN0 /\ N =/= M ) -> ( M < N -> ( ( FermatNo ` N ) gcd ( FermatNo ` M ) ) = 1 ) ) |
| 24 |
17 20 23
|
3jaod |
|- ( ( N e. NN0 /\ M e. NN0 /\ N =/= M ) -> ( ( N < M \/ N = M \/ M < N ) -> ( ( FermatNo ` N ) gcd ( FermatNo ` M ) ) = 1 ) ) |
| 25 |
5 24
|
mpd |
|- ( ( N e. NN0 /\ M e. NN0 /\ N =/= M ) -> ( ( FermatNo ` N ) gcd ( FermatNo ` M ) ) = 1 ) |