| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fmtnonn |
|- ( N e. NN0 -> ( FermatNo ` N ) e. NN ) |
| 2 |
1
|
nnzd |
|- ( N e. NN0 -> ( FermatNo ` N ) e. ZZ ) |
| 3 |
|
fmtnonn |
|- ( M e. NN0 -> ( FermatNo ` M ) e. NN ) |
| 4 |
3
|
nnzd |
|- ( M e. NN0 -> ( FermatNo ` M ) e. ZZ ) |
| 5 |
2 4
|
anim12ci |
|- ( ( N e. NN0 /\ M e. NN0 ) -> ( ( FermatNo ` M ) e. ZZ /\ ( FermatNo ` N ) e. ZZ ) ) |
| 6 |
5
|
3adant3 |
|- ( ( N e. NN0 /\ M e. NN0 /\ M < N ) -> ( ( FermatNo ` M ) e. ZZ /\ ( FermatNo ` N ) e. ZZ ) ) |
| 7 |
|
gcddvds |
|- ( ( ( FermatNo ` M ) e. ZZ /\ ( FermatNo ` N ) e. ZZ ) -> ( ( ( FermatNo ` M ) gcd ( FermatNo ` N ) ) || ( FermatNo ` M ) /\ ( ( FermatNo ` M ) gcd ( FermatNo ` N ) ) || ( FermatNo ` N ) ) ) |
| 8 |
6 7
|
syl |
|- ( ( N e. NN0 /\ M e. NN0 /\ M < N ) -> ( ( ( FermatNo ` M ) gcd ( FermatNo ` N ) ) || ( FermatNo ` M ) /\ ( ( FermatNo ` M ) gcd ( FermatNo ` N ) ) || ( FermatNo ` N ) ) ) |
| 9 |
|
goldbachthlem1 |
|- ( ( N e. NN0 /\ M e. NN0 /\ M < N ) -> ( FermatNo ` M ) || ( ( FermatNo ` N ) - 2 ) ) |
| 10 |
|
gcdcl |
|- ( ( ( FermatNo ` M ) e. ZZ /\ ( FermatNo ` N ) e. ZZ ) -> ( ( FermatNo ` M ) gcd ( FermatNo ` N ) ) e. NN0 ) |
| 11 |
6 10
|
syl |
|- ( ( N e. NN0 /\ M e. NN0 /\ M < N ) -> ( ( FermatNo ` M ) gcd ( FermatNo ` N ) ) e. NN0 ) |
| 12 |
11
|
nn0zd |
|- ( ( N e. NN0 /\ M e. NN0 /\ M < N ) -> ( ( FermatNo ` M ) gcd ( FermatNo ` N ) ) e. ZZ ) |
| 13 |
4
|
3ad2ant2 |
|- ( ( N e. NN0 /\ M e. NN0 /\ M < N ) -> ( FermatNo ` M ) e. ZZ ) |
| 14 |
|
2z |
|- 2 e. ZZ |
| 15 |
14
|
a1i |
|- ( N e. NN0 -> 2 e. ZZ ) |
| 16 |
2 15
|
zsubcld |
|- ( N e. NN0 -> ( ( FermatNo ` N ) - 2 ) e. ZZ ) |
| 17 |
16
|
3ad2ant1 |
|- ( ( N e. NN0 /\ M e. NN0 /\ M < N ) -> ( ( FermatNo ` N ) - 2 ) e. ZZ ) |
| 18 |
|
dvdstr |
|- ( ( ( ( FermatNo ` M ) gcd ( FermatNo ` N ) ) e. ZZ /\ ( FermatNo ` M ) e. ZZ /\ ( ( FermatNo ` N ) - 2 ) e. ZZ ) -> ( ( ( ( FermatNo ` M ) gcd ( FermatNo ` N ) ) || ( FermatNo ` M ) /\ ( FermatNo ` M ) || ( ( FermatNo ` N ) - 2 ) ) -> ( ( FermatNo ` M ) gcd ( FermatNo ` N ) ) || ( ( FermatNo ` N ) - 2 ) ) ) |
| 19 |
12 13 17 18
|
syl3anc |
|- ( ( N e. NN0 /\ M e. NN0 /\ M < N ) -> ( ( ( ( FermatNo ` M ) gcd ( FermatNo ` N ) ) || ( FermatNo ` M ) /\ ( FermatNo ` M ) || ( ( FermatNo ` N ) - 2 ) ) -> ( ( FermatNo ` M ) gcd ( FermatNo ` N ) ) || ( ( FermatNo ` N ) - 2 ) ) ) |
| 20 |
9 19
|
mpan2d |
|- ( ( N e. NN0 /\ M e. NN0 /\ M < N ) -> ( ( ( FermatNo ` M ) gcd ( FermatNo ` N ) ) || ( FermatNo ` M ) -> ( ( FermatNo ` M ) gcd ( FermatNo ` N ) ) || ( ( FermatNo ` N ) - 2 ) ) ) |
| 21 |
2
|
3ad2ant1 |
|- ( ( N e. NN0 /\ M e. NN0 /\ M < N ) -> ( FermatNo ` N ) e. ZZ ) |
| 22 |
|
dvds2sub |
|- ( ( ( ( FermatNo ` M ) gcd ( FermatNo ` N ) ) e. ZZ /\ ( FermatNo ` N ) e. ZZ /\ ( ( FermatNo ` N ) - 2 ) e. ZZ ) -> ( ( ( ( FermatNo ` M ) gcd ( FermatNo ` N ) ) || ( FermatNo ` N ) /\ ( ( FermatNo ` M ) gcd ( FermatNo ` N ) ) || ( ( FermatNo ` N ) - 2 ) ) -> ( ( FermatNo ` M ) gcd ( FermatNo ` N ) ) || ( ( FermatNo ` N ) - ( ( FermatNo ` N ) - 2 ) ) ) ) |
| 23 |
12 21 17 22
|
syl3anc |
|- ( ( N e. NN0 /\ M e. NN0 /\ M < N ) -> ( ( ( ( FermatNo ` M ) gcd ( FermatNo ` N ) ) || ( FermatNo ` N ) /\ ( ( FermatNo ` M ) gcd ( FermatNo ` N ) ) || ( ( FermatNo ` N ) - 2 ) ) -> ( ( FermatNo ` M ) gcd ( FermatNo ` N ) ) || ( ( FermatNo ` N ) - ( ( FermatNo ` N ) - 2 ) ) ) ) |
| 24 |
23
|
ancomsd |
|- ( ( N e. NN0 /\ M e. NN0 /\ M < N ) -> ( ( ( ( FermatNo ` M ) gcd ( FermatNo ` N ) ) || ( ( FermatNo ` N ) - 2 ) /\ ( ( FermatNo ` M ) gcd ( FermatNo ` N ) ) || ( FermatNo ` N ) ) -> ( ( FermatNo ` M ) gcd ( FermatNo ` N ) ) || ( ( FermatNo ` N ) - ( ( FermatNo ` N ) - 2 ) ) ) ) |
| 25 |
1
|
nncnd |
|- ( N e. NN0 -> ( FermatNo ` N ) e. CC ) |
| 26 |
25
|
3ad2ant1 |
|- ( ( N e. NN0 /\ M e. NN0 /\ M < N ) -> ( FermatNo ` N ) e. CC ) |
| 27 |
|
2cnd |
|- ( ( N e. NN0 /\ M e. NN0 /\ M < N ) -> 2 e. CC ) |
| 28 |
26 27
|
nncand |
|- ( ( N e. NN0 /\ M e. NN0 /\ M < N ) -> ( ( FermatNo ` N ) - ( ( FermatNo ` N ) - 2 ) ) = 2 ) |
| 29 |
28
|
breq2d |
|- ( ( N e. NN0 /\ M e. NN0 /\ M < N ) -> ( ( ( FermatNo ` M ) gcd ( FermatNo ` N ) ) || ( ( FermatNo ` N ) - ( ( FermatNo ` N ) - 2 ) ) <-> ( ( FermatNo ` M ) gcd ( FermatNo ` N ) ) || 2 ) ) |
| 30 |
|
2prm |
|- 2 e. Prime |
| 31 |
1 3
|
anim12ci |
|- ( ( N e. NN0 /\ M e. NN0 ) -> ( ( FermatNo ` M ) e. NN /\ ( FermatNo ` N ) e. NN ) ) |
| 32 |
31
|
3adant3 |
|- ( ( N e. NN0 /\ M e. NN0 /\ M < N ) -> ( ( FermatNo ` M ) e. NN /\ ( FermatNo ` N ) e. NN ) ) |
| 33 |
|
gcdnncl |
|- ( ( ( FermatNo ` M ) e. NN /\ ( FermatNo ` N ) e. NN ) -> ( ( FermatNo ` M ) gcd ( FermatNo ` N ) ) e. NN ) |
| 34 |
32 33
|
syl |
|- ( ( N e. NN0 /\ M e. NN0 /\ M < N ) -> ( ( FermatNo ` M ) gcd ( FermatNo ` N ) ) e. NN ) |
| 35 |
|
dvdsprime |
|- ( ( 2 e. Prime /\ ( ( FermatNo ` M ) gcd ( FermatNo ` N ) ) e. NN ) -> ( ( ( FermatNo ` M ) gcd ( FermatNo ` N ) ) || 2 <-> ( ( ( FermatNo ` M ) gcd ( FermatNo ` N ) ) = 2 \/ ( ( FermatNo ` M ) gcd ( FermatNo ` N ) ) = 1 ) ) ) |
| 36 |
30 34 35
|
sylancr |
|- ( ( N e. NN0 /\ M e. NN0 /\ M < N ) -> ( ( ( FermatNo ` M ) gcd ( FermatNo ` N ) ) || 2 <-> ( ( ( FermatNo ` M ) gcd ( FermatNo ` N ) ) = 2 \/ ( ( FermatNo ` M ) gcd ( FermatNo ` N ) ) = 1 ) ) ) |
| 37 |
5 7
|
syl |
|- ( ( N e. NN0 /\ M e. NN0 ) -> ( ( ( FermatNo ` M ) gcd ( FermatNo ` N ) ) || ( FermatNo ` M ) /\ ( ( FermatNo ` M ) gcd ( FermatNo ` N ) ) || ( FermatNo ` N ) ) ) |
| 38 |
|
breq1 |
|- ( ( ( FermatNo ` M ) gcd ( FermatNo ` N ) ) = 2 -> ( ( ( FermatNo ` M ) gcd ( FermatNo ` N ) ) || ( FermatNo ` N ) <-> 2 || ( FermatNo ` N ) ) ) |
| 39 |
38
|
adantl |
|- ( ( ( N e. NN0 /\ M e. NN0 ) /\ ( ( FermatNo ` M ) gcd ( FermatNo ` N ) ) = 2 ) -> ( ( ( FermatNo ` M ) gcd ( FermatNo ` N ) ) || ( FermatNo ` N ) <-> 2 || ( FermatNo ` N ) ) ) |
| 40 |
|
fmtnoodd |
|- ( N e. NN0 -> -. 2 || ( FermatNo ` N ) ) |
| 41 |
40
|
pm2.21d |
|- ( N e. NN0 -> ( 2 || ( FermatNo ` N ) -> ( ( FermatNo ` N ) gcd ( FermatNo ` M ) ) = 1 ) ) |
| 42 |
41
|
ad2antrr |
|- ( ( ( N e. NN0 /\ M e. NN0 ) /\ ( ( FermatNo ` M ) gcd ( FermatNo ` N ) ) = 2 ) -> ( 2 || ( FermatNo ` N ) -> ( ( FermatNo ` N ) gcd ( FermatNo ` M ) ) = 1 ) ) |
| 43 |
39 42
|
sylbid |
|- ( ( ( N e. NN0 /\ M e. NN0 ) /\ ( ( FermatNo ` M ) gcd ( FermatNo ` N ) ) = 2 ) -> ( ( ( FermatNo ` M ) gcd ( FermatNo ` N ) ) || ( FermatNo ` N ) -> ( ( FermatNo ` N ) gcd ( FermatNo ` M ) ) = 1 ) ) |
| 44 |
43
|
ex |
|- ( ( N e. NN0 /\ M e. NN0 ) -> ( ( ( FermatNo ` M ) gcd ( FermatNo ` N ) ) = 2 -> ( ( ( FermatNo ` M ) gcd ( FermatNo ` N ) ) || ( FermatNo ` N ) -> ( ( FermatNo ` N ) gcd ( FermatNo ` M ) ) = 1 ) ) ) |
| 45 |
44
|
com23 |
|- ( ( N e. NN0 /\ M e. NN0 ) -> ( ( ( FermatNo ` M ) gcd ( FermatNo ` N ) ) || ( FermatNo ` N ) -> ( ( ( FermatNo ` M ) gcd ( FermatNo ` N ) ) = 2 -> ( ( FermatNo ` N ) gcd ( FermatNo ` M ) ) = 1 ) ) ) |
| 46 |
45
|
adantld |
|- ( ( N e. NN0 /\ M e. NN0 ) -> ( ( ( ( FermatNo ` M ) gcd ( FermatNo ` N ) ) || ( FermatNo ` M ) /\ ( ( FermatNo ` M ) gcd ( FermatNo ` N ) ) || ( FermatNo ` N ) ) -> ( ( ( FermatNo ` M ) gcd ( FermatNo ` N ) ) = 2 -> ( ( FermatNo ` N ) gcd ( FermatNo ` M ) ) = 1 ) ) ) |
| 47 |
37 46
|
mpd |
|- ( ( N e. NN0 /\ M e. NN0 ) -> ( ( ( FermatNo ` M ) gcd ( FermatNo ` N ) ) = 2 -> ( ( FermatNo ` N ) gcd ( FermatNo ` M ) ) = 1 ) ) |
| 48 |
47
|
3adant3 |
|- ( ( N e. NN0 /\ M e. NN0 /\ M < N ) -> ( ( ( FermatNo ` M ) gcd ( FermatNo ` N ) ) = 2 -> ( ( FermatNo ` N ) gcd ( FermatNo ` M ) ) = 1 ) ) |
| 49 |
|
gcdcom |
|- ( ( ( FermatNo ` M ) e. ZZ /\ ( FermatNo ` N ) e. ZZ ) -> ( ( FermatNo ` M ) gcd ( FermatNo ` N ) ) = ( ( FermatNo ` N ) gcd ( FermatNo ` M ) ) ) |
| 50 |
6 49
|
syl |
|- ( ( N e. NN0 /\ M e. NN0 /\ M < N ) -> ( ( FermatNo ` M ) gcd ( FermatNo ` N ) ) = ( ( FermatNo ` N ) gcd ( FermatNo ` M ) ) ) |
| 51 |
50
|
eqeq1d |
|- ( ( N e. NN0 /\ M e. NN0 /\ M < N ) -> ( ( ( FermatNo ` M ) gcd ( FermatNo ` N ) ) = 1 <-> ( ( FermatNo ` N ) gcd ( FermatNo ` M ) ) = 1 ) ) |
| 52 |
51
|
biimpd |
|- ( ( N e. NN0 /\ M e. NN0 /\ M < N ) -> ( ( ( FermatNo ` M ) gcd ( FermatNo ` N ) ) = 1 -> ( ( FermatNo ` N ) gcd ( FermatNo ` M ) ) = 1 ) ) |
| 53 |
48 52
|
jaod |
|- ( ( N e. NN0 /\ M e. NN0 /\ M < N ) -> ( ( ( ( FermatNo ` M ) gcd ( FermatNo ` N ) ) = 2 \/ ( ( FermatNo ` M ) gcd ( FermatNo ` N ) ) = 1 ) -> ( ( FermatNo ` N ) gcd ( FermatNo ` M ) ) = 1 ) ) |
| 54 |
36 53
|
sylbid |
|- ( ( N e. NN0 /\ M e. NN0 /\ M < N ) -> ( ( ( FermatNo ` M ) gcd ( FermatNo ` N ) ) || 2 -> ( ( FermatNo ` N ) gcd ( FermatNo ` M ) ) = 1 ) ) |
| 55 |
29 54
|
sylbid |
|- ( ( N e. NN0 /\ M e. NN0 /\ M < N ) -> ( ( ( FermatNo ` M ) gcd ( FermatNo ` N ) ) || ( ( FermatNo ` N ) - ( ( FermatNo ` N ) - 2 ) ) -> ( ( FermatNo ` N ) gcd ( FermatNo ` M ) ) = 1 ) ) |
| 56 |
24 55
|
syld |
|- ( ( N e. NN0 /\ M e. NN0 /\ M < N ) -> ( ( ( ( FermatNo ` M ) gcd ( FermatNo ` N ) ) || ( ( FermatNo ` N ) - 2 ) /\ ( ( FermatNo ` M ) gcd ( FermatNo ` N ) ) || ( FermatNo ` N ) ) -> ( ( FermatNo ` N ) gcd ( FermatNo ` M ) ) = 1 ) ) |
| 57 |
20 56
|
syland |
|- ( ( N e. NN0 /\ M e. NN0 /\ M < N ) -> ( ( ( ( FermatNo ` M ) gcd ( FermatNo ` N ) ) || ( FermatNo ` M ) /\ ( ( FermatNo ` M ) gcd ( FermatNo ` N ) ) || ( FermatNo ` N ) ) -> ( ( FermatNo ` N ) gcd ( FermatNo ` M ) ) = 1 ) ) |
| 58 |
8 57
|
mpd |
|- ( ( N e. NN0 /\ M e. NN0 /\ M < N ) -> ( ( FermatNo ` N ) gcd ( FermatNo ` M ) ) = 1 ) |