| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simp2 |  |-  ( ( N e. NN0 /\ M e. NN0 /\ M < N ) -> M e. NN0 ) | 
						
							| 2 |  | nn0z |  |-  ( M e. NN0 -> M e. ZZ ) | 
						
							| 3 |  | nn0z |  |-  ( N e. NN0 -> N e. ZZ ) | 
						
							| 4 |  | znnsub |  |-  ( ( M e. ZZ /\ N e. ZZ ) -> ( M < N <-> ( N - M ) e. NN ) ) | 
						
							| 5 | 2 3 4 | syl2anr |  |-  ( ( N e. NN0 /\ M e. NN0 ) -> ( M < N <-> ( N - M ) e. NN ) ) | 
						
							| 6 | 5 | biimp3a |  |-  ( ( N e. NN0 /\ M e. NN0 /\ M < N ) -> ( N - M ) e. NN ) | 
						
							| 7 |  | fmtnodvds |  |-  ( ( M e. NN0 /\ ( N - M ) e. NN ) -> ( FermatNo ` M ) || ( ( FermatNo ` ( M + ( N - M ) ) ) - 2 ) ) | 
						
							| 8 | 1 6 7 | syl2anc |  |-  ( ( N e. NN0 /\ M e. NN0 /\ M < N ) -> ( FermatNo ` M ) || ( ( FermatNo ` ( M + ( N - M ) ) ) - 2 ) ) | 
						
							| 9 |  | nn0cn |  |-  ( N e. NN0 -> N e. CC ) | 
						
							| 10 |  | nn0cn |  |-  ( M e. NN0 -> M e. CC ) | 
						
							| 11 | 9 10 | anim12ci |  |-  ( ( N e. NN0 /\ M e. NN0 ) -> ( M e. CC /\ N e. CC ) ) | 
						
							| 12 | 11 | 3adant3 |  |-  ( ( N e. NN0 /\ M e. NN0 /\ M < N ) -> ( M e. CC /\ N e. CC ) ) | 
						
							| 13 |  | pncan3 |  |-  ( ( M e. CC /\ N e. CC ) -> ( M + ( N - M ) ) = N ) | 
						
							| 14 | 12 13 | syl |  |-  ( ( N e. NN0 /\ M e. NN0 /\ M < N ) -> ( M + ( N - M ) ) = N ) | 
						
							| 15 | 14 | eqcomd |  |-  ( ( N e. NN0 /\ M e. NN0 /\ M < N ) -> N = ( M + ( N - M ) ) ) | 
						
							| 16 | 15 | fveq2d |  |-  ( ( N e. NN0 /\ M e. NN0 /\ M < N ) -> ( FermatNo ` N ) = ( FermatNo ` ( M + ( N - M ) ) ) ) | 
						
							| 17 | 16 | oveq1d |  |-  ( ( N e. NN0 /\ M e. NN0 /\ M < N ) -> ( ( FermatNo ` N ) - 2 ) = ( ( FermatNo ` ( M + ( N - M ) ) ) - 2 ) ) | 
						
							| 18 | 8 17 | breqtrrd |  |-  ( ( N e. NN0 /\ M e. NN0 /\ M < N ) -> ( FermatNo ` M ) || ( ( FermatNo ` N ) - 2 ) ) |