| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simp2 |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ∧ 𝑀 < 𝑁 ) → 𝑀 ∈ ℕ0 ) |
| 2 |
|
nn0z |
⊢ ( 𝑀 ∈ ℕ0 → 𝑀 ∈ ℤ ) |
| 3 |
|
nn0z |
⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ ) |
| 4 |
|
znnsub |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 < 𝑁 ↔ ( 𝑁 − 𝑀 ) ∈ ℕ ) ) |
| 5 |
2 3 4
|
syl2anr |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) → ( 𝑀 < 𝑁 ↔ ( 𝑁 − 𝑀 ) ∈ ℕ ) ) |
| 6 |
5
|
biimp3a |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ∧ 𝑀 < 𝑁 ) → ( 𝑁 − 𝑀 ) ∈ ℕ ) |
| 7 |
|
fmtnodvds |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ ( 𝑁 − 𝑀 ) ∈ ℕ ) → ( FermatNo ‘ 𝑀 ) ∥ ( ( FermatNo ‘ ( 𝑀 + ( 𝑁 − 𝑀 ) ) ) − 2 ) ) |
| 8 |
1 6 7
|
syl2anc |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ∧ 𝑀 < 𝑁 ) → ( FermatNo ‘ 𝑀 ) ∥ ( ( FermatNo ‘ ( 𝑀 + ( 𝑁 − 𝑀 ) ) ) − 2 ) ) |
| 9 |
|
nn0cn |
⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℂ ) |
| 10 |
|
nn0cn |
⊢ ( 𝑀 ∈ ℕ0 → 𝑀 ∈ ℂ ) |
| 11 |
9 10
|
anim12ci |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) → ( 𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ ) ) |
| 12 |
11
|
3adant3 |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ∧ 𝑀 < 𝑁 ) → ( 𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ ) ) |
| 13 |
|
pncan3 |
⊢ ( ( 𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ ) → ( 𝑀 + ( 𝑁 − 𝑀 ) ) = 𝑁 ) |
| 14 |
12 13
|
syl |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ∧ 𝑀 < 𝑁 ) → ( 𝑀 + ( 𝑁 − 𝑀 ) ) = 𝑁 ) |
| 15 |
14
|
eqcomd |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ∧ 𝑀 < 𝑁 ) → 𝑁 = ( 𝑀 + ( 𝑁 − 𝑀 ) ) ) |
| 16 |
15
|
fveq2d |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ∧ 𝑀 < 𝑁 ) → ( FermatNo ‘ 𝑁 ) = ( FermatNo ‘ ( 𝑀 + ( 𝑁 − 𝑀 ) ) ) ) |
| 17 |
16
|
oveq1d |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ∧ 𝑀 < 𝑁 ) → ( ( FermatNo ‘ 𝑁 ) − 2 ) = ( ( FermatNo ‘ ( 𝑀 + ( 𝑁 − 𝑀 ) ) ) − 2 ) ) |
| 18 |
8 17
|
breqtrrd |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ∧ 𝑀 < 𝑁 ) → ( FermatNo ‘ 𝑀 ) ∥ ( ( FermatNo ‘ 𝑁 ) − 2 ) ) |