Metamath Proof Explorer


Theorem goldbachthlem1

Description: Lemma 1 for goldbachth . (Contributed by AV, 1-Aug-2021)

Ref Expression
Assertion goldbachthlem1 N 0 M 0 M < N FermatNo M FermatNo N 2

Proof

Step Hyp Ref Expression
1 simp2 N 0 M 0 M < N M 0
2 nn0z M 0 M
3 nn0z N 0 N
4 znnsub M N M < N N M
5 2 3 4 syl2anr N 0 M 0 M < N N M
6 5 biimp3a N 0 M 0 M < N N M
7 fmtnodvds M 0 N M FermatNo M FermatNo M + N - M 2
8 1 6 7 syl2anc N 0 M 0 M < N FermatNo M FermatNo M + N - M 2
9 nn0cn N 0 N
10 nn0cn M 0 M
11 9 10 anim12ci N 0 M 0 M N
12 11 3adant3 N 0 M 0 M < N M N
13 pncan3 M N M + N - M = N
14 12 13 syl N 0 M 0 M < N M + N - M = N
15 14 eqcomd N 0 M 0 M < N N = M + N - M
16 15 fveq2d N 0 M 0 M < N FermatNo N = FermatNo M + N - M
17 16 oveq1d N 0 M 0 M < N FermatNo N 2 = FermatNo M + N - M 2
18 8 17 breqtrrd N 0 M 0 M < N FermatNo M FermatNo N 2