Metamath Proof Explorer


Theorem goldbachthlem1

Description: Lemma 1 for goldbachth . (Contributed by AV, 1-Aug-2021)

Ref Expression
Assertion goldbachthlem1 N0M0M<NFermatNoMFermatNoN2

Proof

Step Hyp Ref Expression
1 simp2 N0M0M<NM0
2 nn0z M0M
3 nn0z N0N
4 znnsub MNM<NNM
5 2 3 4 syl2anr N0M0M<NNM
6 5 biimp3a N0M0M<NNM
7 fmtnodvds M0NMFermatNoMFermatNoM+N-M2
8 1 6 7 syl2anc N0M0M<NFermatNoMFermatNoM+N-M2
9 nn0cn N0N
10 nn0cn M0M
11 9 10 anim12ci N0M0MN
12 11 3adant3 N0M0M<NMN
13 pncan3 MNM+N-M=N
14 12 13 syl N0M0M<NM+N-M=N
15 14 eqcomd N0M0M<NN=M+N-M
16 15 fveq2d N0M0M<NFermatNoN=FermatNoM+N-M
17 16 oveq1d N0M0M<NFermatNoN2=FermatNoM+N-M2
18 8 17 breqtrrd N0M0M<NFermatNoMFermatNoN2