Description: Goldbach's theorem: Two different Fermat numbers are coprime. See ProofWiki "Goldbach's theorem", 31-Jul-2021, https://proofwiki.org/wiki/Goldbach%27s_Theorem or Wikipedia "Fermat number", 31-Jul-2021, https://en.wikipedia.org/wiki/Fermat_number#Basic_properties . (Contributed by AV, 1-Aug-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | goldbachth | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0re | |
|
2 | nn0re | |
|
3 | lttri4 | |
|
4 | 1 2 3 | syl2an | |
5 | 4 | 3adant3 | |
6 | fmtnonn | |
|
7 | 6 | nnzd | |
8 | fmtnonn | |
|
9 | 8 | nnzd | |
10 | gcdcom | |
|
11 | 7 9 10 | syl2anr | |
12 | 11 | 3adant3 | |
13 | goldbachthlem2 | |
|
14 | 12 13 | eqtrd | |
15 | 14 | 3exp | |
16 | 15 | impcom | |
17 | 16 | 3adant3 | |
18 | eqneqall | |
|
19 | 18 | com12 | |
20 | 19 | 3ad2ant3 | |
21 | goldbachthlem2 | |
|
22 | 21 | 3expia | |
23 | 22 | 3adant3 | |
24 | 17 20 23 | 3jaod | |
25 | 5 24 | mpd | |