Metamath Proof Explorer


Theorem goldbachth

Description: Goldbach's theorem: Two different Fermat numbers are coprime. See ProofWiki "Goldbach's theorem", 31-Jul-2021, https://proofwiki.org/wiki/Goldbach%27s_Theorem or Wikipedia "Fermat number", 31-Jul-2021, https://en.wikipedia.org/wiki/Fermat_number#Basic_properties . (Contributed by AV, 1-Aug-2021)

Ref Expression
Assertion goldbachth N0M0NMFermatNoNgcdFermatNoM=1

Proof

Step Hyp Ref Expression
1 nn0re N0N
2 nn0re M0M
3 lttri4 NMN<MN=MM<N
4 1 2 3 syl2an N0M0N<MN=MM<N
5 4 3adant3 N0M0NMN<MN=MM<N
6 fmtnonn N0FermatNoN
7 6 nnzd N0FermatNoN
8 fmtnonn M0FermatNoM
9 8 nnzd M0FermatNoM
10 gcdcom FermatNoNFermatNoMFermatNoNgcdFermatNoM=FermatNoMgcdFermatNoN
11 7 9 10 syl2anr M0N0FermatNoNgcdFermatNoM=FermatNoMgcdFermatNoN
12 11 3adant3 M0N0N<MFermatNoNgcdFermatNoM=FermatNoMgcdFermatNoN
13 goldbachthlem2 M0N0N<MFermatNoMgcdFermatNoN=1
14 12 13 eqtrd M0N0N<MFermatNoNgcdFermatNoM=1
15 14 3exp M0N0N<MFermatNoNgcdFermatNoM=1
16 15 impcom N0M0N<MFermatNoNgcdFermatNoM=1
17 16 3adant3 N0M0NMN<MFermatNoNgcdFermatNoM=1
18 eqneqall N=MNMFermatNoNgcdFermatNoM=1
19 18 com12 NMN=MFermatNoNgcdFermatNoM=1
20 19 3ad2ant3 N0M0NMN=MFermatNoNgcdFermatNoM=1
21 goldbachthlem2 N0M0M<NFermatNoNgcdFermatNoM=1
22 21 3expia N0M0M<NFermatNoNgcdFermatNoM=1
23 22 3adant3 N0M0NMM<NFermatNoNgcdFermatNoM=1
24 17 20 23 3jaod N0M0NMN<MN=MM<NFermatNoNgcdFermatNoM=1
25 5 24 mpd N0M0NMFermatNoNgcdFermatNoM=1