| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nn0re |
|
| 2 |
|
nn0re |
|
| 3 |
|
lttri4 |
|
| 4 |
1 2 3
|
syl2an |
|
| 5 |
4
|
3adant3 |
|
| 6 |
|
fmtnonn |
|
| 7 |
6
|
nnzd |
|
| 8 |
|
fmtnonn |
|
| 9 |
8
|
nnzd |
|
| 10 |
|
gcdcom |
|
| 11 |
7 9 10
|
syl2anr |
|
| 12 |
11
|
3adant3 |
|
| 13 |
|
goldbachthlem2 |
|
| 14 |
12 13
|
eqtrd |
|
| 15 |
14
|
3exp |
|
| 16 |
15
|
impcom |
|
| 17 |
16
|
3adant3 |
|
| 18 |
|
eqneqall |
|
| 19 |
18
|
com12 |
|
| 20 |
19
|
3ad2ant3 |
|
| 21 |
|
goldbachthlem2 |
|
| 22 |
21
|
3expia |
|
| 23 |
22
|
3adant3 |
|
| 24 |
17 20 23
|
3jaod |
|
| 25 |
5 24
|
mpd |
|