Step |
Hyp |
Ref |
Expression |
1 |
|
nn0re |
⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ ) |
2 |
|
nn0re |
⊢ ( 𝑀 ∈ ℕ0 → 𝑀 ∈ ℝ ) |
3 |
|
lttri4 |
⊢ ( ( 𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ) → ( 𝑁 < 𝑀 ∨ 𝑁 = 𝑀 ∨ 𝑀 < 𝑁 ) ) |
4 |
1 2 3
|
syl2an |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) → ( 𝑁 < 𝑀 ∨ 𝑁 = 𝑀 ∨ 𝑀 < 𝑁 ) ) |
5 |
4
|
3adant3 |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ≠ 𝑀 ) → ( 𝑁 < 𝑀 ∨ 𝑁 = 𝑀 ∨ 𝑀 < 𝑁 ) ) |
6 |
|
fmtnonn |
⊢ ( 𝑁 ∈ ℕ0 → ( FermatNo ‘ 𝑁 ) ∈ ℕ ) |
7 |
6
|
nnzd |
⊢ ( 𝑁 ∈ ℕ0 → ( FermatNo ‘ 𝑁 ) ∈ ℤ ) |
8 |
|
fmtnonn |
⊢ ( 𝑀 ∈ ℕ0 → ( FermatNo ‘ 𝑀 ) ∈ ℕ ) |
9 |
8
|
nnzd |
⊢ ( 𝑀 ∈ ℕ0 → ( FermatNo ‘ 𝑀 ) ∈ ℤ ) |
10 |
|
gcdcom |
⊢ ( ( ( FermatNo ‘ 𝑁 ) ∈ ℤ ∧ ( FermatNo ‘ 𝑀 ) ∈ ℤ ) → ( ( FermatNo ‘ 𝑁 ) gcd ( FermatNo ‘ 𝑀 ) ) = ( ( FermatNo ‘ 𝑀 ) gcd ( FermatNo ‘ 𝑁 ) ) ) |
11 |
7 9 10
|
syl2anr |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( ( FermatNo ‘ 𝑁 ) gcd ( FermatNo ‘ 𝑀 ) ) = ( ( FermatNo ‘ 𝑀 ) gcd ( FermatNo ‘ 𝑁 ) ) ) |
12 |
11
|
3adant3 |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑁 < 𝑀 ) → ( ( FermatNo ‘ 𝑁 ) gcd ( FermatNo ‘ 𝑀 ) ) = ( ( FermatNo ‘ 𝑀 ) gcd ( FermatNo ‘ 𝑁 ) ) ) |
13 |
|
goldbachthlem2 |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑁 < 𝑀 ) → ( ( FermatNo ‘ 𝑀 ) gcd ( FermatNo ‘ 𝑁 ) ) = 1 ) |
14 |
12 13
|
eqtrd |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑁 < 𝑀 ) → ( ( FermatNo ‘ 𝑁 ) gcd ( FermatNo ‘ 𝑀 ) ) = 1 ) |
15 |
14
|
3exp |
⊢ ( 𝑀 ∈ ℕ0 → ( 𝑁 ∈ ℕ0 → ( 𝑁 < 𝑀 → ( ( FermatNo ‘ 𝑁 ) gcd ( FermatNo ‘ 𝑀 ) ) = 1 ) ) ) |
16 |
15
|
impcom |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) → ( 𝑁 < 𝑀 → ( ( FermatNo ‘ 𝑁 ) gcd ( FermatNo ‘ 𝑀 ) ) = 1 ) ) |
17 |
16
|
3adant3 |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ≠ 𝑀 ) → ( 𝑁 < 𝑀 → ( ( FermatNo ‘ 𝑁 ) gcd ( FermatNo ‘ 𝑀 ) ) = 1 ) ) |
18 |
|
eqneqall |
⊢ ( 𝑁 = 𝑀 → ( 𝑁 ≠ 𝑀 → ( ( FermatNo ‘ 𝑁 ) gcd ( FermatNo ‘ 𝑀 ) ) = 1 ) ) |
19 |
18
|
com12 |
⊢ ( 𝑁 ≠ 𝑀 → ( 𝑁 = 𝑀 → ( ( FermatNo ‘ 𝑁 ) gcd ( FermatNo ‘ 𝑀 ) ) = 1 ) ) |
20 |
19
|
3ad2ant3 |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ≠ 𝑀 ) → ( 𝑁 = 𝑀 → ( ( FermatNo ‘ 𝑁 ) gcd ( FermatNo ‘ 𝑀 ) ) = 1 ) ) |
21 |
|
goldbachthlem2 |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ∧ 𝑀 < 𝑁 ) → ( ( FermatNo ‘ 𝑁 ) gcd ( FermatNo ‘ 𝑀 ) ) = 1 ) |
22 |
21
|
3expia |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) → ( 𝑀 < 𝑁 → ( ( FermatNo ‘ 𝑁 ) gcd ( FermatNo ‘ 𝑀 ) ) = 1 ) ) |
23 |
22
|
3adant3 |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ≠ 𝑀 ) → ( 𝑀 < 𝑁 → ( ( FermatNo ‘ 𝑁 ) gcd ( FermatNo ‘ 𝑀 ) ) = 1 ) ) |
24 |
17 20 23
|
3jaod |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ≠ 𝑀 ) → ( ( 𝑁 < 𝑀 ∨ 𝑁 = 𝑀 ∨ 𝑀 < 𝑁 ) → ( ( FermatNo ‘ 𝑁 ) gcd ( FermatNo ‘ 𝑀 ) ) = 1 ) ) |
25 |
5 24
|
mpd |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ≠ 𝑀 ) → ( ( FermatNo ‘ 𝑁 ) gcd ( FermatNo ‘ 𝑀 ) ) = 1 ) |