| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fmtnonn | ⊢ ( 𝑁  ∈  ℕ0  →  ( FermatNo ‘ 𝑁 )  ∈  ℕ ) | 
						
							| 2 | 1 | nnzd | ⊢ ( 𝑁  ∈  ℕ0  →  ( FermatNo ‘ 𝑁 )  ∈  ℤ ) | 
						
							| 3 |  | fmtnonn | ⊢ ( 𝑀  ∈  ℕ0  →  ( FermatNo ‘ 𝑀 )  ∈  ℕ ) | 
						
							| 4 | 3 | nnzd | ⊢ ( 𝑀  ∈  ℕ0  →  ( FermatNo ‘ 𝑀 )  ∈  ℤ ) | 
						
							| 5 | 2 4 | anim12ci | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑀  ∈  ℕ0 )  →  ( ( FermatNo ‘ 𝑀 )  ∈  ℤ  ∧  ( FermatNo ‘ 𝑁 )  ∈  ℤ ) ) | 
						
							| 6 | 5 | 3adant3 | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑀  ∈  ℕ0  ∧  𝑀  <  𝑁 )  →  ( ( FermatNo ‘ 𝑀 )  ∈  ℤ  ∧  ( FermatNo ‘ 𝑁 )  ∈  ℤ ) ) | 
						
							| 7 |  | gcddvds | ⊢ ( ( ( FermatNo ‘ 𝑀 )  ∈  ℤ  ∧  ( FermatNo ‘ 𝑁 )  ∈  ℤ )  →  ( ( ( FermatNo ‘ 𝑀 )  gcd  ( FermatNo ‘ 𝑁 ) )  ∥  ( FermatNo ‘ 𝑀 )  ∧  ( ( FermatNo ‘ 𝑀 )  gcd  ( FermatNo ‘ 𝑁 ) )  ∥  ( FermatNo ‘ 𝑁 ) ) ) | 
						
							| 8 | 6 7 | syl | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑀  ∈  ℕ0  ∧  𝑀  <  𝑁 )  →  ( ( ( FermatNo ‘ 𝑀 )  gcd  ( FermatNo ‘ 𝑁 ) )  ∥  ( FermatNo ‘ 𝑀 )  ∧  ( ( FermatNo ‘ 𝑀 )  gcd  ( FermatNo ‘ 𝑁 ) )  ∥  ( FermatNo ‘ 𝑁 ) ) ) | 
						
							| 9 |  | goldbachthlem1 | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑀  ∈  ℕ0  ∧  𝑀  <  𝑁 )  →  ( FermatNo ‘ 𝑀 )  ∥  ( ( FermatNo ‘ 𝑁 )  −  2 ) ) | 
						
							| 10 |  | gcdcl | ⊢ ( ( ( FermatNo ‘ 𝑀 )  ∈  ℤ  ∧  ( FermatNo ‘ 𝑁 )  ∈  ℤ )  →  ( ( FermatNo ‘ 𝑀 )  gcd  ( FermatNo ‘ 𝑁 ) )  ∈  ℕ0 ) | 
						
							| 11 | 6 10 | syl | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑀  ∈  ℕ0  ∧  𝑀  <  𝑁 )  →  ( ( FermatNo ‘ 𝑀 )  gcd  ( FermatNo ‘ 𝑁 ) )  ∈  ℕ0 ) | 
						
							| 12 | 11 | nn0zd | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑀  ∈  ℕ0  ∧  𝑀  <  𝑁 )  →  ( ( FermatNo ‘ 𝑀 )  gcd  ( FermatNo ‘ 𝑁 ) )  ∈  ℤ ) | 
						
							| 13 | 4 | 3ad2ant2 | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑀  ∈  ℕ0  ∧  𝑀  <  𝑁 )  →  ( FermatNo ‘ 𝑀 )  ∈  ℤ ) | 
						
							| 14 |  | 2z | ⊢ 2  ∈  ℤ | 
						
							| 15 | 14 | a1i | ⊢ ( 𝑁  ∈  ℕ0  →  2  ∈  ℤ ) | 
						
							| 16 | 2 15 | zsubcld | ⊢ ( 𝑁  ∈  ℕ0  →  ( ( FermatNo ‘ 𝑁 )  −  2 )  ∈  ℤ ) | 
						
							| 17 | 16 | 3ad2ant1 | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑀  ∈  ℕ0  ∧  𝑀  <  𝑁 )  →  ( ( FermatNo ‘ 𝑁 )  −  2 )  ∈  ℤ ) | 
						
							| 18 |  | dvdstr | ⊢ ( ( ( ( FermatNo ‘ 𝑀 )  gcd  ( FermatNo ‘ 𝑁 ) )  ∈  ℤ  ∧  ( FermatNo ‘ 𝑀 )  ∈  ℤ  ∧  ( ( FermatNo ‘ 𝑁 )  −  2 )  ∈  ℤ )  →  ( ( ( ( FermatNo ‘ 𝑀 )  gcd  ( FermatNo ‘ 𝑁 ) )  ∥  ( FermatNo ‘ 𝑀 )  ∧  ( FermatNo ‘ 𝑀 )  ∥  ( ( FermatNo ‘ 𝑁 )  −  2 ) )  →  ( ( FermatNo ‘ 𝑀 )  gcd  ( FermatNo ‘ 𝑁 ) )  ∥  ( ( FermatNo ‘ 𝑁 )  −  2 ) ) ) | 
						
							| 19 | 12 13 17 18 | syl3anc | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑀  ∈  ℕ0  ∧  𝑀  <  𝑁 )  →  ( ( ( ( FermatNo ‘ 𝑀 )  gcd  ( FermatNo ‘ 𝑁 ) )  ∥  ( FermatNo ‘ 𝑀 )  ∧  ( FermatNo ‘ 𝑀 )  ∥  ( ( FermatNo ‘ 𝑁 )  −  2 ) )  →  ( ( FermatNo ‘ 𝑀 )  gcd  ( FermatNo ‘ 𝑁 ) )  ∥  ( ( FermatNo ‘ 𝑁 )  −  2 ) ) ) | 
						
							| 20 | 9 19 | mpan2d | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑀  ∈  ℕ0  ∧  𝑀  <  𝑁 )  →  ( ( ( FermatNo ‘ 𝑀 )  gcd  ( FermatNo ‘ 𝑁 ) )  ∥  ( FermatNo ‘ 𝑀 )  →  ( ( FermatNo ‘ 𝑀 )  gcd  ( FermatNo ‘ 𝑁 ) )  ∥  ( ( FermatNo ‘ 𝑁 )  −  2 ) ) ) | 
						
							| 21 | 2 | 3ad2ant1 | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑀  ∈  ℕ0  ∧  𝑀  <  𝑁 )  →  ( FermatNo ‘ 𝑁 )  ∈  ℤ ) | 
						
							| 22 |  | dvds2sub | ⊢ ( ( ( ( FermatNo ‘ 𝑀 )  gcd  ( FermatNo ‘ 𝑁 ) )  ∈  ℤ  ∧  ( FermatNo ‘ 𝑁 )  ∈  ℤ  ∧  ( ( FermatNo ‘ 𝑁 )  −  2 )  ∈  ℤ )  →  ( ( ( ( FermatNo ‘ 𝑀 )  gcd  ( FermatNo ‘ 𝑁 ) )  ∥  ( FermatNo ‘ 𝑁 )  ∧  ( ( FermatNo ‘ 𝑀 )  gcd  ( FermatNo ‘ 𝑁 ) )  ∥  ( ( FermatNo ‘ 𝑁 )  −  2 ) )  →  ( ( FermatNo ‘ 𝑀 )  gcd  ( FermatNo ‘ 𝑁 ) )  ∥  ( ( FermatNo ‘ 𝑁 )  −  ( ( FermatNo ‘ 𝑁 )  −  2 ) ) ) ) | 
						
							| 23 | 12 21 17 22 | syl3anc | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑀  ∈  ℕ0  ∧  𝑀  <  𝑁 )  →  ( ( ( ( FermatNo ‘ 𝑀 )  gcd  ( FermatNo ‘ 𝑁 ) )  ∥  ( FermatNo ‘ 𝑁 )  ∧  ( ( FermatNo ‘ 𝑀 )  gcd  ( FermatNo ‘ 𝑁 ) )  ∥  ( ( FermatNo ‘ 𝑁 )  −  2 ) )  →  ( ( FermatNo ‘ 𝑀 )  gcd  ( FermatNo ‘ 𝑁 ) )  ∥  ( ( FermatNo ‘ 𝑁 )  −  ( ( FermatNo ‘ 𝑁 )  −  2 ) ) ) ) | 
						
							| 24 | 23 | ancomsd | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑀  ∈  ℕ0  ∧  𝑀  <  𝑁 )  →  ( ( ( ( FermatNo ‘ 𝑀 )  gcd  ( FermatNo ‘ 𝑁 ) )  ∥  ( ( FermatNo ‘ 𝑁 )  −  2 )  ∧  ( ( FermatNo ‘ 𝑀 )  gcd  ( FermatNo ‘ 𝑁 ) )  ∥  ( FermatNo ‘ 𝑁 ) )  →  ( ( FermatNo ‘ 𝑀 )  gcd  ( FermatNo ‘ 𝑁 ) )  ∥  ( ( FermatNo ‘ 𝑁 )  −  ( ( FermatNo ‘ 𝑁 )  −  2 ) ) ) ) | 
						
							| 25 | 1 | nncnd | ⊢ ( 𝑁  ∈  ℕ0  →  ( FermatNo ‘ 𝑁 )  ∈  ℂ ) | 
						
							| 26 | 25 | 3ad2ant1 | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑀  ∈  ℕ0  ∧  𝑀  <  𝑁 )  →  ( FermatNo ‘ 𝑁 )  ∈  ℂ ) | 
						
							| 27 |  | 2cnd | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑀  ∈  ℕ0  ∧  𝑀  <  𝑁 )  →  2  ∈  ℂ ) | 
						
							| 28 | 26 27 | nncand | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑀  ∈  ℕ0  ∧  𝑀  <  𝑁 )  →  ( ( FermatNo ‘ 𝑁 )  −  ( ( FermatNo ‘ 𝑁 )  −  2 ) )  =  2 ) | 
						
							| 29 | 28 | breq2d | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑀  ∈  ℕ0  ∧  𝑀  <  𝑁 )  →  ( ( ( FermatNo ‘ 𝑀 )  gcd  ( FermatNo ‘ 𝑁 ) )  ∥  ( ( FermatNo ‘ 𝑁 )  −  ( ( FermatNo ‘ 𝑁 )  −  2 ) )  ↔  ( ( FermatNo ‘ 𝑀 )  gcd  ( FermatNo ‘ 𝑁 ) )  ∥  2 ) ) | 
						
							| 30 |  | 2prm | ⊢ 2  ∈  ℙ | 
						
							| 31 | 1 3 | anim12ci | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑀  ∈  ℕ0 )  →  ( ( FermatNo ‘ 𝑀 )  ∈  ℕ  ∧  ( FermatNo ‘ 𝑁 )  ∈  ℕ ) ) | 
						
							| 32 | 31 | 3adant3 | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑀  ∈  ℕ0  ∧  𝑀  <  𝑁 )  →  ( ( FermatNo ‘ 𝑀 )  ∈  ℕ  ∧  ( FermatNo ‘ 𝑁 )  ∈  ℕ ) ) | 
						
							| 33 |  | gcdnncl | ⊢ ( ( ( FermatNo ‘ 𝑀 )  ∈  ℕ  ∧  ( FermatNo ‘ 𝑁 )  ∈  ℕ )  →  ( ( FermatNo ‘ 𝑀 )  gcd  ( FermatNo ‘ 𝑁 ) )  ∈  ℕ ) | 
						
							| 34 | 32 33 | syl | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑀  ∈  ℕ0  ∧  𝑀  <  𝑁 )  →  ( ( FermatNo ‘ 𝑀 )  gcd  ( FermatNo ‘ 𝑁 ) )  ∈  ℕ ) | 
						
							| 35 |  | dvdsprime | ⊢ ( ( 2  ∈  ℙ  ∧  ( ( FermatNo ‘ 𝑀 )  gcd  ( FermatNo ‘ 𝑁 ) )  ∈  ℕ )  →  ( ( ( FermatNo ‘ 𝑀 )  gcd  ( FermatNo ‘ 𝑁 ) )  ∥  2  ↔  ( ( ( FermatNo ‘ 𝑀 )  gcd  ( FermatNo ‘ 𝑁 ) )  =  2  ∨  ( ( FermatNo ‘ 𝑀 )  gcd  ( FermatNo ‘ 𝑁 ) )  =  1 ) ) ) | 
						
							| 36 | 30 34 35 | sylancr | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑀  ∈  ℕ0  ∧  𝑀  <  𝑁 )  →  ( ( ( FermatNo ‘ 𝑀 )  gcd  ( FermatNo ‘ 𝑁 ) )  ∥  2  ↔  ( ( ( FermatNo ‘ 𝑀 )  gcd  ( FermatNo ‘ 𝑁 ) )  =  2  ∨  ( ( FermatNo ‘ 𝑀 )  gcd  ( FermatNo ‘ 𝑁 ) )  =  1 ) ) ) | 
						
							| 37 | 5 7 | syl | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑀  ∈  ℕ0 )  →  ( ( ( FermatNo ‘ 𝑀 )  gcd  ( FermatNo ‘ 𝑁 ) )  ∥  ( FermatNo ‘ 𝑀 )  ∧  ( ( FermatNo ‘ 𝑀 )  gcd  ( FermatNo ‘ 𝑁 ) )  ∥  ( FermatNo ‘ 𝑁 ) ) ) | 
						
							| 38 |  | breq1 | ⊢ ( ( ( FermatNo ‘ 𝑀 )  gcd  ( FermatNo ‘ 𝑁 ) )  =  2  →  ( ( ( FermatNo ‘ 𝑀 )  gcd  ( FermatNo ‘ 𝑁 ) )  ∥  ( FermatNo ‘ 𝑁 )  ↔  2  ∥  ( FermatNo ‘ 𝑁 ) ) ) | 
						
							| 39 | 38 | adantl | ⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  𝑀  ∈  ℕ0 )  ∧  ( ( FermatNo ‘ 𝑀 )  gcd  ( FermatNo ‘ 𝑁 ) )  =  2 )  →  ( ( ( FermatNo ‘ 𝑀 )  gcd  ( FermatNo ‘ 𝑁 ) )  ∥  ( FermatNo ‘ 𝑁 )  ↔  2  ∥  ( FermatNo ‘ 𝑁 ) ) ) | 
						
							| 40 |  | fmtnoodd | ⊢ ( 𝑁  ∈  ℕ0  →  ¬  2  ∥  ( FermatNo ‘ 𝑁 ) ) | 
						
							| 41 | 40 | pm2.21d | ⊢ ( 𝑁  ∈  ℕ0  →  ( 2  ∥  ( FermatNo ‘ 𝑁 )  →  ( ( FermatNo ‘ 𝑁 )  gcd  ( FermatNo ‘ 𝑀 ) )  =  1 ) ) | 
						
							| 42 | 41 | ad2antrr | ⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  𝑀  ∈  ℕ0 )  ∧  ( ( FermatNo ‘ 𝑀 )  gcd  ( FermatNo ‘ 𝑁 ) )  =  2 )  →  ( 2  ∥  ( FermatNo ‘ 𝑁 )  →  ( ( FermatNo ‘ 𝑁 )  gcd  ( FermatNo ‘ 𝑀 ) )  =  1 ) ) | 
						
							| 43 | 39 42 | sylbid | ⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  𝑀  ∈  ℕ0 )  ∧  ( ( FermatNo ‘ 𝑀 )  gcd  ( FermatNo ‘ 𝑁 ) )  =  2 )  →  ( ( ( FermatNo ‘ 𝑀 )  gcd  ( FermatNo ‘ 𝑁 ) )  ∥  ( FermatNo ‘ 𝑁 )  →  ( ( FermatNo ‘ 𝑁 )  gcd  ( FermatNo ‘ 𝑀 ) )  =  1 ) ) | 
						
							| 44 | 43 | ex | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑀  ∈  ℕ0 )  →  ( ( ( FermatNo ‘ 𝑀 )  gcd  ( FermatNo ‘ 𝑁 ) )  =  2  →  ( ( ( FermatNo ‘ 𝑀 )  gcd  ( FermatNo ‘ 𝑁 ) )  ∥  ( FermatNo ‘ 𝑁 )  →  ( ( FermatNo ‘ 𝑁 )  gcd  ( FermatNo ‘ 𝑀 ) )  =  1 ) ) ) | 
						
							| 45 | 44 | com23 | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑀  ∈  ℕ0 )  →  ( ( ( FermatNo ‘ 𝑀 )  gcd  ( FermatNo ‘ 𝑁 ) )  ∥  ( FermatNo ‘ 𝑁 )  →  ( ( ( FermatNo ‘ 𝑀 )  gcd  ( FermatNo ‘ 𝑁 ) )  =  2  →  ( ( FermatNo ‘ 𝑁 )  gcd  ( FermatNo ‘ 𝑀 ) )  =  1 ) ) ) | 
						
							| 46 | 45 | adantld | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑀  ∈  ℕ0 )  →  ( ( ( ( FermatNo ‘ 𝑀 )  gcd  ( FermatNo ‘ 𝑁 ) )  ∥  ( FermatNo ‘ 𝑀 )  ∧  ( ( FermatNo ‘ 𝑀 )  gcd  ( FermatNo ‘ 𝑁 ) )  ∥  ( FermatNo ‘ 𝑁 ) )  →  ( ( ( FermatNo ‘ 𝑀 )  gcd  ( FermatNo ‘ 𝑁 ) )  =  2  →  ( ( FermatNo ‘ 𝑁 )  gcd  ( FermatNo ‘ 𝑀 ) )  =  1 ) ) ) | 
						
							| 47 | 37 46 | mpd | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑀  ∈  ℕ0 )  →  ( ( ( FermatNo ‘ 𝑀 )  gcd  ( FermatNo ‘ 𝑁 ) )  =  2  →  ( ( FermatNo ‘ 𝑁 )  gcd  ( FermatNo ‘ 𝑀 ) )  =  1 ) ) | 
						
							| 48 | 47 | 3adant3 | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑀  ∈  ℕ0  ∧  𝑀  <  𝑁 )  →  ( ( ( FermatNo ‘ 𝑀 )  gcd  ( FermatNo ‘ 𝑁 ) )  =  2  →  ( ( FermatNo ‘ 𝑁 )  gcd  ( FermatNo ‘ 𝑀 ) )  =  1 ) ) | 
						
							| 49 |  | gcdcom | ⊢ ( ( ( FermatNo ‘ 𝑀 )  ∈  ℤ  ∧  ( FermatNo ‘ 𝑁 )  ∈  ℤ )  →  ( ( FermatNo ‘ 𝑀 )  gcd  ( FermatNo ‘ 𝑁 ) )  =  ( ( FermatNo ‘ 𝑁 )  gcd  ( FermatNo ‘ 𝑀 ) ) ) | 
						
							| 50 | 6 49 | syl | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑀  ∈  ℕ0  ∧  𝑀  <  𝑁 )  →  ( ( FermatNo ‘ 𝑀 )  gcd  ( FermatNo ‘ 𝑁 ) )  =  ( ( FermatNo ‘ 𝑁 )  gcd  ( FermatNo ‘ 𝑀 ) ) ) | 
						
							| 51 | 50 | eqeq1d | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑀  ∈  ℕ0  ∧  𝑀  <  𝑁 )  →  ( ( ( FermatNo ‘ 𝑀 )  gcd  ( FermatNo ‘ 𝑁 ) )  =  1  ↔  ( ( FermatNo ‘ 𝑁 )  gcd  ( FermatNo ‘ 𝑀 ) )  =  1 ) ) | 
						
							| 52 | 51 | biimpd | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑀  ∈  ℕ0  ∧  𝑀  <  𝑁 )  →  ( ( ( FermatNo ‘ 𝑀 )  gcd  ( FermatNo ‘ 𝑁 ) )  =  1  →  ( ( FermatNo ‘ 𝑁 )  gcd  ( FermatNo ‘ 𝑀 ) )  =  1 ) ) | 
						
							| 53 | 48 52 | jaod | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑀  ∈  ℕ0  ∧  𝑀  <  𝑁 )  →  ( ( ( ( FermatNo ‘ 𝑀 )  gcd  ( FermatNo ‘ 𝑁 ) )  =  2  ∨  ( ( FermatNo ‘ 𝑀 )  gcd  ( FermatNo ‘ 𝑁 ) )  =  1 )  →  ( ( FermatNo ‘ 𝑁 )  gcd  ( FermatNo ‘ 𝑀 ) )  =  1 ) ) | 
						
							| 54 | 36 53 | sylbid | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑀  ∈  ℕ0  ∧  𝑀  <  𝑁 )  →  ( ( ( FermatNo ‘ 𝑀 )  gcd  ( FermatNo ‘ 𝑁 ) )  ∥  2  →  ( ( FermatNo ‘ 𝑁 )  gcd  ( FermatNo ‘ 𝑀 ) )  =  1 ) ) | 
						
							| 55 | 29 54 | sylbid | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑀  ∈  ℕ0  ∧  𝑀  <  𝑁 )  →  ( ( ( FermatNo ‘ 𝑀 )  gcd  ( FermatNo ‘ 𝑁 ) )  ∥  ( ( FermatNo ‘ 𝑁 )  −  ( ( FermatNo ‘ 𝑁 )  −  2 ) )  →  ( ( FermatNo ‘ 𝑁 )  gcd  ( FermatNo ‘ 𝑀 ) )  =  1 ) ) | 
						
							| 56 | 24 55 | syld | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑀  ∈  ℕ0  ∧  𝑀  <  𝑁 )  →  ( ( ( ( FermatNo ‘ 𝑀 )  gcd  ( FermatNo ‘ 𝑁 ) )  ∥  ( ( FermatNo ‘ 𝑁 )  −  2 )  ∧  ( ( FermatNo ‘ 𝑀 )  gcd  ( FermatNo ‘ 𝑁 ) )  ∥  ( FermatNo ‘ 𝑁 ) )  →  ( ( FermatNo ‘ 𝑁 )  gcd  ( FermatNo ‘ 𝑀 ) )  =  1 ) ) | 
						
							| 57 | 20 56 | syland | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑀  ∈  ℕ0  ∧  𝑀  <  𝑁 )  →  ( ( ( ( FermatNo ‘ 𝑀 )  gcd  ( FermatNo ‘ 𝑁 ) )  ∥  ( FermatNo ‘ 𝑀 )  ∧  ( ( FermatNo ‘ 𝑀 )  gcd  ( FermatNo ‘ 𝑁 ) )  ∥  ( FermatNo ‘ 𝑁 ) )  →  ( ( FermatNo ‘ 𝑁 )  gcd  ( FermatNo ‘ 𝑀 ) )  =  1 ) ) | 
						
							| 58 | 8 57 | mpd | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑀  ∈  ℕ0  ∧  𝑀  <  𝑁 )  →  ( ( FermatNo ‘ 𝑁 )  gcd  ( FermatNo ‘ 𝑀 ) )  =  1 ) |