Metamath Proof Explorer
		
		
		
		Description:  Trichotomy law for 'less than'.  (Contributed by NM, 20-Sep-2007)  (Proof
     shortened by Andrew Salmon, 19-Nov-2011)
		
			
				
					 | 
					 | 
					Ref | 
					Expression | 
				
				
					 | 
					Assertion | 
					lttri4 | 
					⊢  ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( 𝐴  <  𝐵  ∨  𝐴  =  𝐵  ∨  𝐵  <  𝐴 ) )  | 
				
			
		
		
			
				Proof
				
					
						| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							ltso | 
							⊢  <   Or  ℝ  | 
						
						
							| 2 | 
							
								
							 | 
							solin | 
							⊢ ( (  <   Or  ℝ  ∧  ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ ) )  →  ( 𝐴  <  𝐵  ∨  𝐴  =  𝐵  ∨  𝐵  <  𝐴 ) )  | 
						
						
							| 3 | 
							
								1 2
							 | 
							mpan | 
							⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( 𝐴  <  𝐵  ∨  𝐴  =  𝐵  ∨  𝐵  <  𝐴 ) )  |