Metamath Proof Explorer


Theorem fmtnodvds

Description: Any Fermat number divides a greater Fermat number minus 2. Corollary of fmtnorec2 , see ProofWiki "Product of Sequence of Fermat Numbers plus 2/Corollary", 31-Jul-2021. (Contributed by AV, 1-Aug-2021)

Ref Expression
Assertion fmtnodvds N 0 M FermatNo N FermatNo N + M 2

Proof

Step Hyp Ref Expression
1 simpl N 0 M N 0
2 nn0nnaddcl N 0 M N + M
3 nnm1nn0 N + M N + M - 1 0
4 2 3 syl N 0 M N + M - 1 0
5 1red N 0 M 1
6 nnre M M
7 6 adantl N 0 M M
8 nn0re N 0 N
9 8 adantr N 0 M N
10 nnge1 M 1 M
11 10 adantl N 0 M 1 M
12 5 7 9 11 leadd2dd N 0 M N + 1 N + M
13 readdcl N M N + M
14 8 6 13 syl2an N 0 M N + M
15 leaddsub N 1 N + M N + 1 N + M N N + M - 1
16 9 5 14 15 syl3anc N 0 M N + 1 N + M N N + M - 1
17 12 16 mpbid N 0 M N N + M - 1
18 elfz2nn0 N 0 N + M - 1 N 0 N + M - 1 0 N N + M - 1
19 1 4 17 18 syl3anbrc N 0 M N 0 N + M - 1
20 fzfid N 0 M 0 N + M - 1 Fin
21 fz0ssnn0 0 N + M - 1 0
22 21 a1i N 0 M 0 N + M - 1 0
23 2nn0 2 0
24 23 a1i n 0 2 0
25 id n 0 n 0
26 24 25 nn0expcld n 0 2 n 0
27 24 26 nn0expcld n 0 2 2 n 0
28 27 nn0zd n 0 2 2 n
29 28 peano2zd n 0 2 2 n + 1
30 29 adantl N 0 M n 0 2 2 n + 1
31 df-fmtno FermatNo = n 0 2 2 n + 1
32 30 31 fmptd N 0 M FermatNo : 0
33 20 22 32 fprodfvdvdsd N 0 M n 0 N + M - 1 FermatNo n k = 0 N + M - 1 FermatNo k
34 fveq2 n = N FermatNo n = FermatNo N
35 34 breq1d n = N FermatNo n k = 0 N + M - 1 FermatNo k FermatNo N k = 0 N + M - 1 FermatNo k
36 35 rspcv N 0 N + M - 1 n 0 N + M - 1 FermatNo n k = 0 N + M - 1 FermatNo k FermatNo N k = 0 N + M - 1 FermatNo k
37 19 33 36 sylc N 0 M FermatNo N k = 0 N + M - 1 FermatNo k
38 elfznn0 k 0 N + M - 1 k 0
39 38 adantl N 0 M k 0 N + M - 1 k 0
40 fmtnonn k 0 FermatNo k
41 39 40 syl N 0 M k 0 N + M - 1 FermatNo k
42 41 nncnd N 0 M k 0 N + M - 1 FermatNo k
43 20 42 fprodcl N 0 M k = 0 N + M - 1 FermatNo k
44 2cnd N 0 M 2
45 nn0cn N 0 N
46 nncn M M
47 addcl N M N + M
48 45 46 47 syl2an N 0 M N + M
49 npcan1 N + M N + M - 1 + 1 = N + M
50 48 49 syl N 0 M N + M - 1 + 1 = N + M
51 50 eqcomd N 0 M N + M = N + M - 1 + 1
52 51 fveq2d N 0 M FermatNo N + M = FermatNo N + M - 1 + 1
53 fmtnorec2 N + M - 1 0 FermatNo N + M - 1 + 1 = k = 0 N + M - 1 FermatNo k + 2
54 4 53 syl N 0 M FermatNo N + M - 1 + 1 = k = 0 N + M - 1 FermatNo k + 2
55 52 54 eqtrd N 0 M FermatNo N + M = k = 0 N + M - 1 FermatNo k + 2
56 43 44 55 mvrraddd N 0 M FermatNo N + M 2 = k = 0 N + M - 1 FermatNo k
57 37 56 breqtrrd N 0 M FermatNo N FermatNo N + M 2