Step |
Hyp |
Ref |
Expression |
1 |
|
simpl |
|
2 |
|
nn0nnaddcl |
|
3 |
|
nnm1nn0 |
|
4 |
2 3
|
syl |
|
5 |
|
1red |
|
6 |
|
nnre |
|
7 |
6
|
adantl |
|
8 |
|
nn0re |
|
9 |
8
|
adantr |
|
10 |
|
nnge1 |
|
11 |
10
|
adantl |
|
12 |
5 7 9 11
|
leadd2dd |
|
13 |
|
readdcl |
|
14 |
8 6 13
|
syl2an |
|
15 |
|
leaddsub |
|
16 |
9 5 14 15
|
syl3anc |
|
17 |
12 16
|
mpbid |
|
18 |
|
elfz2nn0 |
|
19 |
1 4 17 18
|
syl3anbrc |
|
20 |
|
fzfid |
|
21 |
|
fz0ssnn0 |
|
22 |
21
|
a1i |
|
23 |
|
2nn0 |
|
24 |
23
|
a1i |
|
25 |
|
id |
|
26 |
24 25
|
nn0expcld |
|
27 |
24 26
|
nn0expcld |
|
28 |
27
|
nn0zd |
|
29 |
28
|
peano2zd |
|
30 |
29
|
adantl |
|
31 |
|
df-fmtno |
|
32 |
30 31
|
fmptd |
|
33 |
20 22 32
|
fprodfvdvdsd |
|
34 |
|
fveq2 |
|
35 |
34
|
breq1d |
|
36 |
35
|
rspcv |
|
37 |
19 33 36
|
sylc |
|
38 |
|
elfznn0 |
|
39 |
38
|
adantl |
|
40 |
|
fmtnonn |
|
41 |
39 40
|
syl |
|
42 |
41
|
nncnd |
|
43 |
20 42
|
fprodcl |
|
44 |
|
2cnd |
|
45 |
|
nn0cn |
|
46 |
|
nncn |
|
47 |
|
addcl |
|
48 |
45 46 47
|
syl2an |
|
49 |
|
npcan1 |
|
50 |
48 49
|
syl |
|
51 |
50
|
eqcomd |
|
52 |
51
|
fveq2d |
|
53 |
|
fmtnorec2 |
|
54 |
4 53
|
syl |
|
55 |
52 54
|
eqtrd |
|
56 |
43 44 55
|
mvrraddd |
|
57 |
37 56
|
breqtrrd |
|