| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fprodfvdvdsd.a |
|
| 2 |
|
fprodfvdvdsd.b |
|
| 3 |
|
fprodfvdvdsd.f |
|
| 4 |
1
|
adantr |
|
| 5 |
|
diffi |
|
| 6 |
4 5
|
syl |
|
| 7 |
3
|
adantr |
|
| 8 |
2
|
ssdifssd |
|
| 9 |
8
|
sselda |
|
| 10 |
7 9
|
ffvelcdmd |
|
| 11 |
10
|
adantlr |
|
| 12 |
6 11
|
fprodzcl |
|
| 13 |
3
|
adantr |
|
| 14 |
2
|
sselda |
|
| 15 |
13 14
|
ffvelcdmd |
|
| 16 |
|
dvdsmul2 |
|
| 17 |
12 15 16
|
syl2anc |
|
| 18 |
17
|
ralrimiva |
|
| 19 |
|
neldifsnd |
|
| 20 |
|
disjsn |
|
| 21 |
19 20
|
sylibr |
|
| 22 |
|
difsnid |
|
| 23 |
22
|
eqcomd |
|
| 24 |
23
|
adantl |
|
| 25 |
13
|
adantr |
|
| 26 |
2
|
adantr |
|
| 27 |
26
|
sselda |
|
| 28 |
25 27
|
ffvelcdmd |
|
| 29 |
28
|
zcnd |
|
| 30 |
21 24 4 29
|
fprodsplit |
|
| 31 |
|
simpr |
|
| 32 |
15
|
zcnd |
|
| 33 |
|
fveq2 |
|
| 34 |
33
|
prodsn |
|
| 35 |
31 32 34
|
syl2anc |
|
| 36 |
35
|
oveq2d |
|
| 37 |
30 36
|
eqtrd |
|
| 38 |
37
|
breq2d |
|
| 39 |
38
|
ralbidva |
|
| 40 |
18 39
|
mpbird |
|