| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpl |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ ) → 𝑁 ∈ ℕ0 ) |
| 2 |
|
nn0nnaddcl |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ ) → ( 𝑁 + 𝑀 ) ∈ ℕ ) |
| 3 |
|
nnm1nn0 |
⊢ ( ( 𝑁 + 𝑀 ) ∈ ℕ → ( ( 𝑁 + 𝑀 ) − 1 ) ∈ ℕ0 ) |
| 4 |
2 3
|
syl |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ ) → ( ( 𝑁 + 𝑀 ) − 1 ) ∈ ℕ0 ) |
| 5 |
|
1red |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ ) → 1 ∈ ℝ ) |
| 6 |
|
nnre |
⊢ ( 𝑀 ∈ ℕ → 𝑀 ∈ ℝ ) |
| 7 |
6
|
adantl |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ ) → 𝑀 ∈ ℝ ) |
| 8 |
|
nn0re |
⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ ) |
| 9 |
8
|
adantr |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ ) → 𝑁 ∈ ℝ ) |
| 10 |
|
nnge1 |
⊢ ( 𝑀 ∈ ℕ → 1 ≤ 𝑀 ) |
| 11 |
10
|
adantl |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ ) → 1 ≤ 𝑀 ) |
| 12 |
5 7 9 11
|
leadd2dd |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ ) → ( 𝑁 + 1 ) ≤ ( 𝑁 + 𝑀 ) ) |
| 13 |
|
readdcl |
⊢ ( ( 𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ) → ( 𝑁 + 𝑀 ) ∈ ℝ ) |
| 14 |
8 6 13
|
syl2an |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ ) → ( 𝑁 + 𝑀 ) ∈ ℝ ) |
| 15 |
|
leaddsub |
⊢ ( ( 𝑁 ∈ ℝ ∧ 1 ∈ ℝ ∧ ( 𝑁 + 𝑀 ) ∈ ℝ ) → ( ( 𝑁 + 1 ) ≤ ( 𝑁 + 𝑀 ) ↔ 𝑁 ≤ ( ( 𝑁 + 𝑀 ) − 1 ) ) ) |
| 16 |
9 5 14 15
|
syl3anc |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ ) → ( ( 𝑁 + 1 ) ≤ ( 𝑁 + 𝑀 ) ↔ 𝑁 ≤ ( ( 𝑁 + 𝑀 ) − 1 ) ) ) |
| 17 |
12 16
|
mpbid |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ ) → 𝑁 ≤ ( ( 𝑁 + 𝑀 ) − 1 ) ) |
| 18 |
|
elfz2nn0 |
⊢ ( 𝑁 ∈ ( 0 ... ( ( 𝑁 + 𝑀 ) − 1 ) ) ↔ ( 𝑁 ∈ ℕ0 ∧ ( ( 𝑁 + 𝑀 ) − 1 ) ∈ ℕ0 ∧ 𝑁 ≤ ( ( 𝑁 + 𝑀 ) − 1 ) ) ) |
| 19 |
1 4 17 18
|
syl3anbrc |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ ) → 𝑁 ∈ ( 0 ... ( ( 𝑁 + 𝑀 ) − 1 ) ) ) |
| 20 |
|
fzfid |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ ) → ( 0 ... ( ( 𝑁 + 𝑀 ) − 1 ) ) ∈ Fin ) |
| 21 |
|
fz0ssnn0 |
⊢ ( 0 ... ( ( 𝑁 + 𝑀 ) − 1 ) ) ⊆ ℕ0 |
| 22 |
21
|
a1i |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ ) → ( 0 ... ( ( 𝑁 + 𝑀 ) − 1 ) ) ⊆ ℕ0 ) |
| 23 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
| 24 |
23
|
a1i |
⊢ ( 𝑛 ∈ ℕ0 → 2 ∈ ℕ0 ) |
| 25 |
|
id |
⊢ ( 𝑛 ∈ ℕ0 → 𝑛 ∈ ℕ0 ) |
| 26 |
24 25
|
nn0expcld |
⊢ ( 𝑛 ∈ ℕ0 → ( 2 ↑ 𝑛 ) ∈ ℕ0 ) |
| 27 |
24 26
|
nn0expcld |
⊢ ( 𝑛 ∈ ℕ0 → ( 2 ↑ ( 2 ↑ 𝑛 ) ) ∈ ℕ0 ) |
| 28 |
27
|
nn0zd |
⊢ ( 𝑛 ∈ ℕ0 → ( 2 ↑ ( 2 ↑ 𝑛 ) ) ∈ ℤ ) |
| 29 |
28
|
peano2zd |
⊢ ( 𝑛 ∈ ℕ0 → ( ( 2 ↑ ( 2 ↑ 𝑛 ) ) + 1 ) ∈ ℤ ) |
| 30 |
29
|
adantl |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ ) ∧ 𝑛 ∈ ℕ0 ) → ( ( 2 ↑ ( 2 ↑ 𝑛 ) ) + 1 ) ∈ ℤ ) |
| 31 |
|
df-fmtno |
⊢ FermatNo = ( 𝑛 ∈ ℕ0 ↦ ( ( 2 ↑ ( 2 ↑ 𝑛 ) ) + 1 ) ) |
| 32 |
30 31
|
fmptd |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ ) → FermatNo : ℕ0 ⟶ ℤ ) |
| 33 |
20 22 32
|
fprodfvdvdsd |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ ) → ∀ 𝑛 ∈ ( 0 ... ( ( 𝑁 + 𝑀 ) − 1 ) ) ( FermatNo ‘ 𝑛 ) ∥ ∏ 𝑘 ∈ ( 0 ... ( ( 𝑁 + 𝑀 ) − 1 ) ) ( FermatNo ‘ 𝑘 ) ) |
| 34 |
|
fveq2 |
⊢ ( 𝑛 = 𝑁 → ( FermatNo ‘ 𝑛 ) = ( FermatNo ‘ 𝑁 ) ) |
| 35 |
34
|
breq1d |
⊢ ( 𝑛 = 𝑁 → ( ( FermatNo ‘ 𝑛 ) ∥ ∏ 𝑘 ∈ ( 0 ... ( ( 𝑁 + 𝑀 ) − 1 ) ) ( FermatNo ‘ 𝑘 ) ↔ ( FermatNo ‘ 𝑁 ) ∥ ∏ 𝑘 ∈ ( 0 ... ( ( 𝑁 + 𝑀 ) − 1 ) ) ( FermatNo ‘ 𝑘 ) ) ) |
| 36 |
35
|
rspcv |
⊢ ( 𝑁 ∈ ( 0 ... ( ( 𝑁 + 𝑀 ) − 1 ) ) → ( ∀ 𝑛 ∈ ( 0 ... ( ( 𝑁 + 𝑀 ) − 1 ) ) ( FermatNo ‘ 𝑛 ) ∥ ∏ 𝑘 ∈ ( 0 ... ( ( 𝑁 + 𝑀 ) − 1 ) ) ( FermatNo ‘ 𝑘 ) → ( FermatNo ‘ 𝑁 ) ∥ ∏ 𝑘 ∈ ( 0 ... ( ( 𝑁 + 𝑀 ) − 1 ) ) ( FermatNo ‘ 𝑘 ) ) ) |
| 37 |
19 33 36
|
sylc |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ ) → ( FermatNo ‘ 𝑁 ) ∥ ∏ 𝑘 ∈ ( 0 ... ( ( 𝑁 + 𝑀 ) − 1 ) ) ( FermatNo ‘ 𝑘 ) ) |
| 38 |
|
elfznn0 |
⊢ ( 𝑘 ∈ ( 0 ... ( ( 𝑁 + 𝑀 ) − 1 ) ) → 𝑘 ∈ ℕ0 ) |
| 39 |
38
|
adantl |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ ) ∧ 𝑘 ∈ ( 0 ... ( ( 𝑁 + 𝑀 ) − 1 ) ) ) → 𝑘 ∈ ℕ0 ) |
| 40 |
|
fmtnonn |
⊢ ( 𝑘 ∈ ℕ0 → ( FermatNo ‘ 𝑘 ) ∈ ℕ ) |
| 41 |
39 40
|
syl |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ ) ∧ 𝑘 ∈ ( 0 ... ( ( 𝑁 + 𝑀 ) − 1 ) ) ) → ( FermatNo ‘ 𝑘 ) ∈ ℕ ) |
| 42 |
41
|
nncnd |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ ) ∧ 𝑘 ∈ ( 0 ... ( ( 𝑁 + 𝑀 ) − 1 ) ) ) → ( FermatNo ‘ 𝑘 ) ∈ ℂ ) |
| 43 |
20 42
|
fprodcl |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ ) → ∏ 𝑘 ∈ ( 0 ... ( ( 𝑁 + 𝑀 ) − 1 ) ) ( FermatNo ‘ 𝑘 ) ∈ ℂ ) |
| 44 |
|
2cnd |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ ) → 2 ∈ ℂ ) |
| 45 |
|
nn0cn |
⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℂ ) |
| 46 |
|
nncn |
⊢ ( 𝑀 ∈ ℕ → 𝑀 ∈ ℂ ) |
| 47 |
|
addcl |
⊢ ( ( 𝑁 ∈ ℂ ∧ 𝑀 ∈ ℂ ) → ( 𝑁 + 𝑀 ) ∈ ℂ ) |
| 48 |
45 46 47
|
syl2an |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ ) → ( 𝑁 + 𝑀 ) ∈ ℂ ) |
| 49 |
|
npcan1 |
⊢ ( ( 𝑁 + 𝑀 ) ∈ ℂ → ( ( ( 𝑁 + 𝑀 ) − 1 ) + 1 ) = ( 𝑁 + 𝑀 ) ) |
| 50 |
48 49
|
syl |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ ) → ( ( ( 𝑁 + 𝑀 ) − 1 ) + 1 ) = ( 𝑁 + 𝑀 ) ) |
| 51 |
50
|
eqcomd |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ ) → ( 𝑁 + 𝑀 ) = ( ( ( 𝑁 + 𝑀 ) − 1 ) + 1 ) ) |
| 52 |
51
|
fveq2d |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ ) → ( FermatNo ‘ ( 𝑁 + 𝑀 ) ) = ( FermatNo ‘ ( ( ( 𝑁 + 𝑀 ) − 1 ) + 1 ) ) ) |
| 53 |
|
fmtnorec2 |
⊢ ( ( ( 𝑁 + 𝑀 ) − 1 ) ∈ ℕ0 → ( FermatNo ‘ ( ( ( 𝑁 + 𝑀 ) − 1 ) + 1 ) ) = ( ∏ 𝑘 ∈ ( 0 ... ( ( 𝑁 + 𝑀 ) − 1 ) ) ( FermatNo ‘ 𝑘 ) + 2 ) ) |
| 54 |
4 53
|
syl |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ ) → ( FermatNo ‘ ( ( ( 𝑁 + 𝑀 ) − 1 ) + 1 ) ) = ( ∏ 𝑘 ∈ ( 0 ... ( ( 𝑁 + 𝑀 ) − 1 ) ) ( FermatNo ‘ 𝑘 ) + 2 ) ) |
| 55 |
52 54
|
eqtrd |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ ) → ( FermatNo ‘ ( 𝑁 + 𝑀 ) ) = ( ∏ 𝑘 ∈ ( 0 ... ( ( 𝑁 + 𝑀 ) − 1 ) ) ( FermatNo ‘ 𝑘 ) + 2 ) ) |
| 56 |
43 44 55
|
mvrraddd |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ ) → ( ( FermatNo ‘ ( 𝑁 + 𝑀 ) ) − 2 ) = ∏ 𝑘 ∈ ( 0 ... ( ( 𝑁 + 𝑀 ) − 1 ) ) ( FermatNo ‘ 𝑘 ) ) |
| 57 |
37 56
|
breqtrrd |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ ) → ( FermatNo ‘ 𝑁 ) ∥ ( ( FermatNo ‘ ( 𝑁 + 𝑀 ) ) − 2 ) ) |