Metamath Proof Explorer


Theorem fmtnorec2

Description: The second recurrence relation for Fermat numbers, see ProofWiki "Product of Sequence of Fermat Numbers plus 2", 29-Jul-2021, https://proofwiki.org/wiki/Product_of_Sequence_of_Fermat_Numbers_plus_2 or Wikipedia "Fermat number", 29-Jul-2021, https://en.wikipedia.org/wiki/Fermat_number#Basic_properties . (Contributed by AV, 29-Jul-2021)

Ref Expression
Assertion fmtnorec2 N 0 FermatNo N + 1 = n = 0 N FermatNo n + 2

Proof

Step Hyp Ref Expression
1 fvoveq1 x = 0 FermatNo x + 1 = FermatNo 0 + 1
2 oveq2 x = 0 0 x = 0 0
3 2 prodeq1d x = 0 n = 0 x FermatNo n = n = 0 0 FermatNo n
4 3 oveq1d x = 0 n = 0 x FermatNo n + 2 = n = 0 0 FermatNo n + 2
5 1 4 eqeq12d x = 0 FermatNo x + 1 = n = 0 x FermatNo n + 2 FermatNo 0 + 1 = n = 0 0 FermatNo n + 2
6 fvoveq1 x = y FermatNo x + 1 = FermatNo y + 1
7 oveq2 x = y 0 x = 0 y
8 7 prodeq1d x = y n = 0 x FermatNo n = n = 0 y FermatNo n
9 8 oveq1d x = y n = 0 x FermatNo n + 2 = n = 0 y FermatNo n + 2
10 6 9 eqeq12d x = y FermatNo x + 1 = n = 0 x FermatNo n + 2 FermatNo y + 1 = n = 0 y FermatNo n + 2
11 fvoveq1 x = y + 1 FermatNo x + 1 = FermatNo y + 1 + 1
12 oveq2 x = y + 1 0 x = 0 y + 1
13 12 prodeq1d x = y + 1 n = 0 x FermatNo n = n = 0 y + 1 FermatNo n
14 13 oveq1d x = y + 1 n = 0 x FermatNo n + 2 = n = 0 y + 1 FermatNo n + 2
15 11 14 eqeq12d x = y + 1 FermatNo x + 1 = n = 0 x FermatNo n + 2 FermatNo y + 1 + 1 = n = 0 y + 1 FermatNo n + 2
16 fvoveq1 x = N FermatNo x + 1 = FermatNo N + 1
17 oveq2 x = N 0 x = 0 N
18 prodeq1 0 x = 0 N n = 0 x FermatNo n = n = 0 N FermatNo n
19 18 oveq1d 0 x = 0 N n = 0 x FermatNo n + 2 = n = 0 N FermatNo n + 2
20 17 19 syl x = N n = 0 x FermatNo n + 2 = n = 0 N FermatNo n + 2
21 16 20 eqeq12d x = N FermatNo x + 1 = n = 0 x FermatNo n + 2 FermatNo N + 1 = n = 0 N FermatNo n + 2
22 fmtno0 FermatNo 0 = 3
23 22 oveq1i FermatNo 0 + 2 = 3 + 2
24 3p2e5 3 + 2 = 5
25 23 24 eqtri FermatNo 0 + 2 = 5
26 fz0sn 0 0 = 0
27 26 prodeq1i n = 0 0 FermatNo n = n 0 FermatNo n
28 0z 0
29 0nn0 0 0
30 fmtnonn 0 0 FermatNo 0
31 30 nncnd 0 0 FermatNo 0
32 29 31 ax-mp FermatNo 0
33 fveq2 n = 0 FermatNo n = FermatNo 0
34 33 prodsn 0 FermatNo 0 n 0 FermatNo n = FermatNo 0
35 28 32 34 mp2an n 0 FermatNo n = FermatNo 0
36 27 35 eqtri n = 0 0 FermatNo n = FermatNo 0
37 36 oveq1i n = 0 0 FermatNo n + 2 = FermatNo 0 + 2
38 0p1e1 0 + 1 = 1
39 38 fveq2i FermatNo 0 + 1 = FermatNo 1
40 fmtno1 FermatNo 1 = 5
41 39 40 eqtri FermatNo 0 + 1 = 5
42 25 37 41 3eqtr4ri FermatNo 0 + 1 = n = 0 0 FermatNo n + 2
43 fmtnorec2lem y 0 FermatNo y + 1 = n = 0 y FermatNo n + 2 FermatNo y + 1 + 1 = n = 0 y + 1 FermatNo n + 2
44 5 10 15 21 42 43 nn0ind N 0 FermatNo N + 1 = n = 0 N FermatNo n + 2