Metamath Proof Explorer


Theorem fmtnorec2

Description: The second recurrence relation for Fermat numbers, see ProofWiki "Product of Sequence of Fermat Numbers plus 2", 29-Jul-2021, https://proofwiki.org/wiki/Product_of_Sequence_of_Fermat_Numbers_plus_2 or Wikipedia "Fermat number", 29-Jul-2021, https://en.wikipedia.org/wiki/Fermat_number#Basic_properties . (Contributed by AV, 29-Jul-2021)

Ref Expression
Assertion fmtnorec2 N0FermatNoN+1=n=0NFermatNon+2

Proof

Step Hyp Ref Expression
1 fvoveq1 x=0FermatNox+1=FermatNo0+1
2 oveq2 x=00x=00
3 2 prodeq1d x=0n=0xFermatNon=n=00FermatNon
4 3 oveq1d x=0n=0xFermatNon+2=n=00FermatNon+2
5 1 4 eqeq12d x=0FermatNox+1=n=0xFermatNon+2FermatNo0+1=n=00FermatNon+2
6 fvoveq1 x=yFermatNox+1=FermatNoy+1
7 oveq2 x=y0x=0y
8 7 prodeq1d x=yn=0xFermatNon=n=0yFermatNon
9 8 oveq1d x=yn=0xFermatNon+2=n=0yFermatNon+2
10 6 9 eqeq12d x=yFermatNox+1=n=0xFermatNon+2FermatNoy+1=n=0yFermatNon+2
11 fvoveq1 x=y+1FermatNox+1=FermatNoy+1+1
12 oveq2 x=y+10x=0y+1
13 12 prodeq1d x=y+1n=0xFermatNon=n=0y+1FermatNon
14 13 oveq1d x=y+1n=0xFermatNon+2=n=0y+1FermatNon+2
15 11 14 eqeq12d x=y+1FermatNox+1=n=0xFermatNon+2FermatNoy+1+1=n=0y+1FermatNon+2
16 fvoveq1 x=NFermatNox+1=FermatNoN+1
17 oveq2 x=N0x=0N
18 prodeq1 0x=0Nn=0xFermatNon=n=0NFermatNon
19 18 oveq1d 0x=0Nn=0xFermatNon+2=n=0NFermatNon+2
20 17 19 syl x=Nn=0xFermatNon+2=n=0NFermatNon+2
21 16 20 eqeq12d x=NFermatNox+1=n=0xFermatNon+2FermatNoN+1=n=0NFermatNon+2
22 fmtno0 FermatNo0=3
23 22 oveq1i FermatNo0+2=3+2
24 3p2e5 3+2=5
25 23 24 eqtri FermatNo0+2=5
26 fz0sn 00=0
27 26 prodeq1i n=00FermatNon=n0FermatNon
28 0z 0
29 0nn0 00
30 fmtnonn 00FermatNo0
31 30 nncnd 00FermatNo0
32 29 31 ax-mp FermatNo0
33 fveq2 n=0FermatNon=FermatNo0
34 33 prodsn 0FermatNo0n0FermatNon=FermatNo0
35 28 32 34 mp2an n0FermatNon=FermatNo0
36 27 35 eqtri n=00FermatNon=FermatNo0
37 36 oveq1i n=00FermatNon+2=FermatNo0+2
38 0p1e1 0+1=1
39 38 fveq2i FermatNo0+1=FermatNo1
40 fmtno1 FermatNo1=5
41 39 40 eqtri FermatNo0+1=5
42 25 37 41 3eqtr4ri FermatNo0+1=n=00FermatNon+2
43 fmtnorec2lem y0FermatNoy+1=n=0yFermatNon+2FermatNoy+1+1=n=0y+1FermatNon+2
44 5 10 15 21 42 43 nn0ind N0FermatNoN+1=n=0NFermatNon+2