| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fzfid |
|- ( N e. ( ZZ>= ` 2 ) -> ( 0 ... ( N - 2 ) ) e. Fin ) |
| 2 |
|
elfznn0 |
|- ( n e. ( 0 ... ( N - 2 ) ) -> n e. NN0 ) |
| 3 |
|
fmtnonn |
|- ( n e. NN0 -> ( FermatNo ` n ) e. NN ) |
| 4 |
2 3
|
syl |
|- ( n e. ( 0 ... ( N - 2 ) ) -> ( FermatNo ` n ) e. NN ) |
| 5 |
4
|
nncnd |
|- ( n e. ( 0 ... ( N - 2 ) ) -> ( FermatNo ` n ) e. CC ) |
| 6 |
5
|
adantl |
|- ( ( N e. ( ZZ>= ` 2 ) /\ n e. ( 0 ... ( N - 2 ) ) ) -> ( FermatNo ` n ) e. CC ) |
| 7 |
1 6
|
fprodcl |
|- ( N e. ( ZZ>= ` 2 ) -> prod_ n e. ( 0 ... ( N - 2 ) ) ( FermatNo ` n ) e. CC ) |
| 8 |
|
2cn |
|- 2 e. CC |
| 9 |
8
|
a1i |
|- ( N e. ( ZZ>= ` 2 ) -> 2 e. CC ) |
| 10 |
|
uznn0sub |
|- ( N e. ( ZZ>= ` 2 ) -> ( N - 2 ) e. NN0 ) |
| 11 |
|
fmtnorec2 |
|- ( ( N - 2 ) e. NN0 -> ( FermatNo ` ( ( N - 2 ) + 1 ) ) = ( prod_ n e. ( 0 ... ( N - 2 ) ) ( FermatNo ` n ) + 2 ) ) |
| 12 |
10 11
|
syl |
|- ( N e. ( ZZ>= ` 2 ) -> ( FermatNo ` ( ( N - 2 ) + 1 ) ) = ( prod_ n e. ( 0 ... ( N - 2 ) ) ( FermatNo ` n ) + 2 ) ) |
| 13 |
12
|
eqcomd |
|- ( N e. ( ZZ>= ` 2 ) -> ( prod_ n e. ( 0 ... ( N - 2 ) ) ( FermatNo ` n ) + 2 ) = ( FermatNo ` ( ( N - 2 ) + 1 ) ) ) |
| 14 |
7 9 13
|
mvlraddd |
|- ( N e. ( ZZ>= ` 2 ) -> prod_ n e. ( 0 ... ( N - 2 ) ) ( FermatNo ` n ) = ( ( FermatNo ` ( ( N - 2 ) + 1 ) ) - 2 ) ) |
| 15 |
14
|
oveq2d |
|- ( N e. ( ZZ>= ` 2 ) -> ( ( 2 ^ ( 2 ^ ( N - 1 ) ) ) x. prod_ n e. ( 0 ... ( N - 2 ) ) ( FermatNo ` n ) ) = ( ( 2 ^ ( 2 ^ ( N - 1 ) ) ) x. ( ( FermatNo ` ( ( N - 2 ) + 1 ) ) - 2 ) ) ) |
| 16 |
15
|
oveq2d |
|- ( N e. ( ZZ>= ` 2 ) -> ( ( FermatNo ` ( N - 1 ) ) + ( ( 2 ^ ( 2 ^ ( N - 1 ) ) ) x. prod_ n e. ( 0 ... ( N - 2 ) ) ( FermatNo ` n ) ) ) = ( ( FermatNo ` ( N - 1 ) ) + ( ( 2 ^ ( 2 ^ ( N - 1 ) ) ) x. ( ( FermatNo ` ( ( N - 2 ) + 1 ) ) - 2 ) ) ) ) |
| 17 |
|
2nn0 |
|- 2 e. NN0 |
| 18 |
17
|
a1i |
|- ( N e. ( ZZ>= ` 2 ) -> 2 e. NN0 ) |
| 19 |
|
eluz2nn |
|- ( N e. ( ZZ>= ` 2 ) -> N e. NN ) |
| 20 |
|
nnm1nn0 |
|- ( N e. NN -> ( N - 1 ) e. NN0 ) |
| 21 |
19 20
|
syl |
|- ( N e. ( ZZ>= ` 2 ) -> ( N - 1 ) e. NN0 ) |
| 22 |
18 21
|
nn0expcld |
|- ( N e. ( ZZ>= ` 2 ) -> ( 2 ^ ( N - 1 ) ) e. NN0 ) |
| 23 |
18 22
|
nn0expcld |
|- ( N e. ( ZZ>= ` 2 ) -> ( 2 ^ ( 2 ^ ( N - 1 ) ) ) e. NN0 ) |
| 24 |
23
|
nn0cnd |
|- ( N e. ( ZZ>= ` 2 ) -> ( 2 ^ ( 2 ^ ( N - 1 ) ) ) e. CC ) |
| 25 |
|
peano2nn0 |
|- ( ( N - 2 ) e. NN0 -> ( ( N - 2 ) + 1 ) e. NN0 ) |
| 26 |
10 25
|
syl |
|- ( N e. ( ZZ>= ` 2 ) -> ( ( N - 2 ) + 1 ) e. NN0 ) |
| 27 |
|
fmtnonn |
|- ( ( ( N - 2 ) + 1 ) e. NN0 -> ( FermatNo ` ( ( N - 2 ) + 1 ) ) e. NN ) |
| 28 |
26 27
|
syl |
|- ( N e. ( ZZ>= ` 2 ) -> ( FermatNo ` ( ( N - 2 ) + 1 ) ) e. NN ) |
| 29 |
28
|
nncnd |
|- ( N e. ( ZZ>= ` 2 ) -> ( FermatNo ` ( ( N - 2 ) + 1 ) ) e. CC ) |
| 30 |
24 29 9
|
subdid |
|- ( N e. ( ZZ>= ` 2 ) -> ( ( 2 ^ ( 2 ^ ( N - 1 ) ) ) x. ( ( FermatNo ` ( ( N - 2 ) + 1 ) ) - 2 ) ) = ( ( ( 2 ^ ( 2 ^ ( N - 1 ) ) ) x. ( FermatNo ` ( ( N - 2 ) + 1 ) ) ) - ( ( 2 ^ ( 2 ^ ( N - 1 ) ) ) x. 2 ) ) ) |
| 31 |
|
eluzelcn |
|- ( N e. ( ZZ>= ` 2 ) -> N e. CC ) |
| 32 |
|
ax-1cn |
|- 1 e. CC |
| 33 |
32
|
a1i |
|- ( N e. ( ZZ>= ` 2 ) -> 1 e. CC ) |
| 34 |
|
subsub |
|- ( ( N e. CC /\ 2 e. CC /\ 1 e. CC ) -> ( N - ( 2 - 1 ) ) = ( ( N - 2 ) + 1 ) ) |
| 35 |
34
|
eqcomd |
|- ( ( N e. CC /\ 2 e. CC /\ 1 e. CC ) -> ( ( N - 2 ) + 1 ) = ( N - ( 2 - 1 ) ) ) |
| 36 |
31 9 33 35
|
syl3anc |
|- ( N e. ( ZZ>= ` 2 ) -> ( ( N - 2 ) + 1 ) = ( N - ( 2 - 1 ) ) ) |
| 37 |
|
2m1e1 |
|- ( 2 - 1 ) = 1 |
| 38 |
37
|
oveq2i |
|- ( N - ( 2 - 1 ) ) = ( N - 1 ) |
| 39 |
36 38
|
eqtrdi |
|- ( N e. ( ZZ>= ` 2 ) -> ( ( N - 2 ) + 1 ) = ( N - 1 ) ) |
| 40 |
39
|
fveq2d |
|- ( N e. ( ZZ>= ` 2 ) -> ( FermatNo ` ( ( N - 2 ) + 1 ) ) = ( FermatNo ` ( N - 1 ) ) ) |
| 41 |
40
|
oveq2d |
|- ( N e. ( ZZ>= ` 2 ) -> ( ( 2 ^ ( 2 ^ ( N - 1 ) ) ) x. ( FermatNo ` ( ( N - 2 ) + 1 ) ) ) = ( ( 2 ^ ( 2 ^ ( N - 1 ) ) ) x. ( FermatNo ` ( N - 1 ) ) ) ) |
| 42 |
41
|
oveq1d |
|- ( N e. ( ZZ>= ` 2 ) -> ( ( ( 2 ^ ( 2 ^ ( N - 1 ) ) ) x. ( FermatNo ` ( ( N - 2 ) + 1 ) ) ) - ( ( 2 ^ ( 2 ^ ( N - 1 ) ) ) x. 2 ) ) = ( ( ( 2 ^ ( 2 ^ ( N - 1 ) ) ) x. ( FermatNo ` ( N - 1 ) ) ) - ( ( 2 ^ ( 2 ^ ( N - 1 ) ) ) x. 2 ) ) ) |
| 43 |
30 42
|
eqtrd |
|- ( N e. ( ZZ>= ` 2 ) -> ( ( 2 ^ ( 2 ^ ( N - 1 ) ) ) x. ( ( FermatNo ` ( ( N - 2 ) + 1 ) ) - 2 ) ) = ( ( ( 2 ^ ( 2 ^ ( N - 1 ) ) ) x. ( FermatNo ` ( N - 1 ) ) ) - ( ( 2 ^ ( 2 ^ ( N - 1 ) ) ) x. 2 ) ) ) |
| 44 |
43
|
oveq2d |
|- ( N e. ( ZZ>= ` 2 ) -> ( ( FermatNo ` ( N - 1 ) ) + ( ( 2 ^ ( 2 ^ ( N - 1 ) ) ) x. ( ( FermatNo ` ( ( N - 2 ) + 1 ) ) - 2 ) ) ) = ( ( FermatNo ` ( N - 1 ) ) + ( ( ( 2 ^ ( 2 ^ ( N - 1 ) ) ) x. ( FermatNo ` ( N - 1 ) ) ) - ( ( 2 ^ ( 2 ^ ( N - 1 ) ) ) x. 2 ) ) ) ) |
| 45 |
|
fmtnonn |
|- ( ( N - 1 ) e. NN0 -> ( FermatNo ` ( N - 1 ) ) e. NN ) |
| 46 |
21 45
|
syl |
|- ( N e. ( ZZ>= ` 2 ) -> ( FermatNo ` ( N - 1 ) ) e. NN ) |
| 47 |
46
|
nncnd |
|- ( N e. ( ZZ>= ` 2 ) -> ( FermatNo ` ( N - 1 ) ) e. CC ) |
| 48 |
47
|
mullidd |
|- ( N e. ( ZZ>= ` 2 ) -> ( 1 x. ( FermatNo ` ( N - 1 ) ) ) = ( FermatNo ` ( N - 1 ) ) ) |
| 49 |
48
|
eqcomd |
|- ( N e. ( ZZ>= ` 2 ) -> ( FermatNo ` ( N - 1 ) ) = ( 1 x. ( FermatNo ` ( N - 1 ) ) ) ) |
| 50 |
49
|
oveq1d |
|- ( N e. ( ZZ>= ` 2 ) -> ( ( FermatNo ` ( N - 1 ) ) + ( ( 2 ^ ( 2 ^ ( N - 1 ) ) ) x. ( FermatNo ` ( N - 1 ) ) ) ) = ( ( 1 x. ( FermatNo ` ( N - 1 ) ) ) + ( ( 2 ^ ( 2 ^ ( N - 1 ) ) ) x. ( FermatNo ` ( N - 1 ) ) ) ) ) |
| 51 |
33 24 47
|
adddird |
|- ( N e. ( ZZ>= ` 2 ) -> ( ( 1 + ( 2 ^ ( 2 ^ ( N - 1 ) ) ) ) x. ( FermatNo ` ( N - 1 ) ) ) = ( ( 1 x. ( FermatNo ` ( N - 1 ) ) ) + ( ( 2 ^ ( 2 ^ ( N - 1 ) ) ) x. ( FermatNo ` ( N - 1 ) ) ) ) ) |
| 52 |
33 24
|
addcomd |
|- ( N e. ( ZZ>= ` 2 ) -> ( 1 + ( 2 ^ ( 2 ^ ( N - 1 ) ) ) ) = ( ( 2 ^ ( 2 ^ ( N - 1 ) ) ) + 1 ) ) |
| 53 |
|
fmtno |
|- ( ( N - 1 ) e. NN0 -> ( FermatNo ` ( N - 1 ) ) = ( ( 2 ^ ( 2 ^ ( N - 1 ) ) ) + 1 ) ) |
| 54 |
21 53
|
syl |
|- ( N e. ( ZZ>= ` 2 ) -> ( FermatNo ` ( N - 1 ) ) = ( ( 2 ^ ( 2 ^ ( N - 1 ) ) ) + 1 ) ) |
| 55 |
52 54
|
eqtr4d |
|- ( N e. ( ZZ>= ` 2 ) -> ( 1 + ( 2 ^ ( 2 ^ ( N - 1 ) ) ) ) = ( FermatNo ` ( N - 1 ) ) ) |
| 56 |
55
|
oveq1d |
|- ( N e. ( ZZ>= ` 2 ) -> ( ( 1 + ( 2 ^ ( 2 ^ ( N - 1 ) ) ) ) x. ( FermatNo ` ( N - 1 ) ) ) = ( ( FermatNo ` ( N - 1 ) ) x. ( FermatNo ` ( N - 1 ) ) ) ) |
| 57 |
47
|
sqvald |
|- ( N e. ( ZZ>= ` 2 ) -> ( ( FermatNo ` ( N - 1 ) ) ^ 2 ) = ( ( FermatNo ` ( N - 1 ) ) x. ( FermatNo ` ( N - 1 ) ) ) ) |
| 58 |
56 57
|
eqtr4d |
|- ( N e. ( ZZ>= ` 2 ) -> ( ( 1 + ( 2 ^ ( 2 ^ ( N - 1 ) ) ) ) x. ( FermatNo ` ( N - 1 ) ) ) = ( ( FermatNo ` ( N - 1 ) ) ^ 2 ) ) |
| 59 |
50 51 58
|
3eqtr2d |
|- ( N e. ( ZZ>= ` 2 ) -> ( ( FermatNo ` ( N - 1 ) ) + ( ( 2 ^ ( 2 ^ ( N - 1 ) ) ) x. ( FermatNo ` ( N - 1 ) ) ) ) = ( ( FermatNo ` ( N - 1 ) ) ^ 2 ) ) |
| 60 |
59
|
oveq1d |
|- ( N e. ( ZZ>= ` 2 ) -> ( ( ( FermatNo ` ( N - 1 ) ) + ( ( 2 ^ ( 2 ^ ( N - 1 ) ) ) x. ( FermatNo ` ( N - 1 ) ) ) ) - ( ( 2 ^ ( 2 ^ ( N - 1 ) ) ) x. 2 ) ) = ( ( ( FermatNo ` ( N - 1 ) ) ^ 2 ) - ( ( 2 ^ ( 2 ^ ( N - 1 ) ) ) x. 2 ) ) ) |
| 61 |
24 47
|
mulcld |
|- ( N e. ( ZZ>= ` 2 ) -> ( ( 2 ^ ( 2 ^ ( N - 1 ) ) ) x. ( FermatNo ` ( N - 1 ) ) ) e. CC ) |
| 62 |
24 9
|
mulcld |
|- ( N e. ( ZZ>= ` 2 ) -> ( ( 2 ^ ( 2 ^ ( N - 1 ) ) ) x. 2 ) e. CC ) |
| 63 |
47 61 62
|
addsubassd |
|- ( N e. ( ZZ>= ` 2 ) -> ( ( ( FermatNo ` ( N - 1 ) ) + ( ( 2 ^ ( 2 ^ ( N - 1 ) ) ) x. ( FermatNo ` ( N - 1 ) ) ) ) - ( ( 2 ^ ( 2 ^ ( N - 1 ) ) ) x. 2 ) ) = ( ( FermatNo ` ( N - 1 ) ) + ( ( ( 2 ^ ( 2 ^ ( N - 1 ) ) ) x. ( FermatNo ` ( N - 1 ) ) ) - ( ( 2 ^ ( 2 ^ ( N - 1 ) ) ) x. 2 ) ) ) ) |
| 64 |
|
npcan1 |
|- ( N e. CC -> ( ( N - 1 ) + 1 ) = N ) |
| 65 |
31 64
|
syl |
|- ( N e. ( ZZ>= ` 2 ) -> ( ( N - 1 ) + 1 ) = N ) |
| 66 |
65
|
eqcomd |
|- ( N e. ( ZZ>= ` 2 ) -> N = ( ( N - 1 ) + 1 ) ) |
| 67 |
66
|
fveq2d |
|- ( N e. ( ZZ>= ` 2 ) -> ( FermatNo ` N ) = ( FermatNo ` ( ( N - 1 ) + 1 ) ) ) |
| 68 |
|
fmtnorec1 |
|- ( ( N - 1 ) e. NN0 -> ( FermatNo ` ( ( N - 1 ) + 1 ) ) = ( ( ( ( FermatNo ` ( N - 1 ) ) - 1 ) ^ 2 ) + 1 ) ) |
| 69 |
21 68
|
syl |
|- ( N e. ( ZZ>= ` 2 ) -> ( FermatNo ` ( ( N - 1 ) + 1 ) ) = ( ( ( ( FermatNo ` ( N - 1 ) ) - 1 ) ^ 2 ) + 1 ) ) |
| 70 |
|
binom2sub1 |
|- ( ( FermatNo ` ( N - 1 ) ) e. CC -> ( ( ( FermatNo ` ( N - 1 ) ) - 1 ) ^ 2 ) = ( ( ( ( FermatNo ` ( N - 1 ) ) ^ 2 ) - ( 2 x. ( FermatNo ` ( N - 1 ) ) ) ) + 1 ) ) |
| 71 |
47 70
|
syl |
|- ( N e. ( ZZ>= ` 2 ) -> ( ( ( FermatNo ` ( N - 1 ) ) - 1 ) ^ 2 ) = ( ( ( ( FermatNo ` ( N - 1 ) ) ^ 2 ) - ( 2 x. ( FermatNo ` ( N - 1 ) ) ) ) + 1 ) ) |
| 72 |
71
|
oveq1d |
|- ( N e. ( ZZ>= ` 2 ) -> ( ( ( ( FermatNo ` ( N - 1 ) ) - 1 ) ^ 2 ) + 1 ) = ( ( ( ( ( FermatNo ` ( N - 1 ) ) ^ 2 ) - ( 2 x. ( FermatNo ` ( N - 1 ) ) ) ) + 1 ) + 1 ) ) |
| 73 |
46
|
nnsqcld |
|- ( N e. ( ZZ>= ` 2 ) -> ( ( FermatNo ` ( N - 1 ) ) ^ 2 ) e. NN ) |
| 74 |
73
|
nncnd |
|- ( N e. ( ZZ>= ` 2 ) -> ( ( FermatNo ` ( N - 1 ) ) ^ 2 ) e. CC ) |
| 75 |
9 47
|
mulcld |
|- ( N e. ( ZZ>= ` 2 ) -> ( 2 x. ( FermatNo ` ( N - 1 ) ) ) e. CC ) |
| 76 |
74 75
|
subcld |
|- ( N e. ( ZZ>= ` 2 ) -> ( ( ( FermatNo ` ( N - 1 ) ) ^ 2 ) - ( 2 x. ( FermatNo ` ( N - 1 ) ) ) ) e. CC ) |
| 77 |
76 33 33
|
addassd |
|- ( N e. ( ZZ>= ` 2 ) -> ( ( ( ( ( FermatNo ` ( N - 1 ) ) ^ 2 ) - ( 2 x. ( FermatNo ` ( N - 1 ) ) ) ) + 1 ) + 1 ) = ( ( ( ( FermatNo ` ( N - 1 ) ) ^ 2 ) - ( 2 x. ( FermatNo ` ( N - 1 ) ) ) ) + ( 1 + 1 ) ) ) |
| 78 |
32
|
2timesi |
|- ( 2 x. 1 ) = ( 1 + 1 ) |
| 79 |
78
|
eqcomi |
|- ( 1 + 1 ) = ( 2 x. 1 ) |
| 80 |
79
|
a1i |
|- ( N e. ( ZZ>= ` 2 ) -> ( 1 + 1 ) = ( 2 x. 1 ) ) |
| 81 |
80
|
oveq2d |
|- ( N e. ( ZZ>= ` 2 ) -> ( ( ( ( FermatNo ` ( N - 1 ) ) ^ 2 ) - ( 2 x. ( FermatNo ` ( N - 1 ) ) ) ) + ( 1 + 1 ) ) = ( ( ( ( FermatNo ` ( N - 1 ) ) ^ 2 ) - ( 2 x. ( FermatNo ` ( N - 1 ) ) ) ) + ( 2 x. 1 ) ) ) |
| 82 |
77 81
|
eqtrd |
|- ( N e. ( ZZ>= ` 2 ) -> ( ( ( ( ( FermatNo ` ( N - 1 ) ) ^ 2 ) - ( 2 x. ( FermatNo ` ( N - 1 ) ) ) ) + 1 ) + 1 ) = ( ( ( ( FermatNo ` ( N - 1 ) ) ^ 2 ) - ( 2 x. ( FermatNo ` ( N - 1 ) ) ) ) + ( 2 x. 1 ) ) ) |
| 83 |
8 32
|
mulcli |
|- ( 2 x. 1 ) e. CC |
| 84 |
83
|
a1i |
|- ( N e. ( ZZ>= ` 2 ) -> ( 2 x. 1 ) e. CC ) |
| 85 |
74 75 84
|
subadd23d |
|- ( N e. ( ZZ>= ` 2 ) -> ( ( ( ( FermatNo ` ( N - 1 ) ) ^ 2 ) - ( 2 x. ( FermatNo ` ( N - 1 ) ) ) ) + ( 2 x. 1 ) ) = ( ( ( FermatNo ` ( N - 1 ) ) ^ 2 ) + ( ( 2 x. 1 ) - ( 2 x. ( FermatNo ` ( N - 1 ) ) ) ) ) ) |
| 86 |
9 33 47
|
subdid |
|- ( N e. ( ZZ>= ` 2 ) -> ( 2 x. ( 1 - ( FermatNo ` ( N - 1 ) ) ) ) = ( ( 2 x. 1 ) - ( 2 x. ( FermatNo ` ( N - 1 ) ) ) ) ) |
| 87 |
86
|
eqcomd |
|- ( N e. ( ZZ>= ` 2 ) -> ( ( 2 x. 1 ) - ( 2 x. ( FermatNo ` ( N - 1 ) ) ) ) = ( 2 x. ( 1 - ( FermatNo ` ( N - 1 ) ) ) ) ) |
| 88 |
87
|
oveq2d |
|- ( N e. ( ZZ>= ` 2 ) -> ( ( ( FermatNo ` ( N - 1 ) ) ^ 2 ) + ( ( 2 x. 1 ) - ( 2 x. ( FermatNo ` ( N - 1 ) ) ) ) ) = ( ( ( FermatNo ` ( N - 1 ) ) ^ 2 ) + ( 2 x. ( 1 - ( FermatNo ` ( N - 1 ) ) ) ) ) ) |
| 89 |
33 47
|
subcld |
|- ( N e. ( ZZ>= ` 2 ) -> ( 1 - ( FermatNo ` ( N - 1 ) ) ) e. CC ) |
| 90 |
9 89
|
mulneg2d |
|- ( N e. ( ZZ>= ` 2 ) -> ( 2 x. -u ( 1 - ( FermatNo ` ( N - 1 ) ) ) ) = -u ( 2 x. ( 1 - ( FermatNo ` ( N - 1 ) ) ) ) ) |
| 91 |
33 47
|
negsubdi2d |
|- ( N e. ( ZZ>= ` 2 ) -> -u ( 1 - ( FermatNo ` ( N - 1 ) ) ) = ( ( FermatNo ` ( N - 1 ) ) - 1 ) ) |
| 92 |
|
fmtnom1nn |
|- ( ( N - 1 ) e. NN0 -> ( ( FermatNo ` ( N - 1 ) ) - 1 ) = ( 2 ^ ( 2 ^ ( N - 1 ) ) ) ) |
| 93 |
21 92
|
syl |
|- ( N e. ( ZZ>= ` 2 ) -> ( ( FermatNo ` ( N - 1 ) ) - 1 ) = ( 2 ^ ( 2 ^ ( N - 1 ) ) ) ) |
| 94 |
91 93
|
eqtrd |
|- ( N e. ( ZZ>= ` 2 ) -> -u ( 1 - ( FermatNo ` ( N - 1 ) ) ) = ( 2 ^ ( 2 ^ ( N - 1 ) ) ) ) |
| 95 |
94
|
oveq2d |
|- ( N e. ( ZZ>= ` 2 ) -> ( 2 x. -u ( 1 - ( FermatNo ` ( N - 1 ) ) ) ) = ( 2 x. ( 2 ^ ( 2 ^ ( N - 1 ) ) ) ) ) |
| 96 |
90 95
|
eqtr3d |
|- ( N e. ( ZZ>= ` 2 ) -> -u ( 2 x. ( 1 - ( FermatNo ` ( N - 1 ) ) ) ) = ( 2 x. ( 2 ^ ( 2 ^ ( N - 1 ) ) ) ) ) |
| 97 |
96
|
oveq2d |
|- ( N e. ( ZZ>= ` 2 ) -> ( ( ( FermatNo ` ( N - 1 ) ) ^ 2 ) - -u ( 2 x. ( 1 - ( FermatNo ` ( N - 1 ) ) ) ) ) = ( ( ( FermatNo ` ( N - 1 ) ) ^ 2 ) - ( 2 x. ( 2 ^ ( 2 ^ ( N - 1 ) ) ) ) ) ) |
| 98 |
9 89
|
mulcld |
|- ( N e. ( ZZ>= ` 2 ) -> ( 2 x. ( 1 - ( FermatNo ` ( N - 1 ) ) ) ) e. CC ) |
| 99 |
74 98
|
subnegd |
|- ( N e. ( ZZ>= ` 2 ) -> ( ( ( FermatNo ` ( N - 1 ) ) ^ 2 ) - -u ( 2 x. ( 1 - ( FermatNo ` ( N - 1 ) ) ) ) ) = ( ( ( FermatNo ` ( N - 1 ) ) ^ 2 ) + ( 2 x. ( 1 - ( FermatNo ` ( N - 1 ) ) ) ) ) ) |
| 100 |
9 24
|
mulcomd |
|- ( N e. ( ZZ>= ` 2 ) -> ( 2 x. ( 2 ^ ( 2 ^ ( N - 1 ) ) ) ) = ( ( 2 ^ ( 2 ^ ( N - 1 ) ) ) x. 2 ) ) |
| 101 |
100
|
oveq2d |
|- ( N e. ( ZZ>= ` 2 ) -> ( ( ( FermatNo ` ( N - 1 ) ) ^ 2 ) - ( 2 x. ( 2 ^ ( 2 ^ ( N - 1 ) ) ) ) ) = ( ( ( FermatNo ` ( N - 1 ) ) ^ 2 ) - ( ( 2 ^ ( 2 ^ ( N - 1 ) ) ) x. 2 ) ) ) |
| 102 |
97 99 101
|
3eqtr3d |
|- ( N e. ( ZZ>= ` 2 ) -> ( ( ( FermatNo ` ( N - 1 ) ) ^ 2 ) + ( 2 x. ( 1 - ( FermatNo ` ( N - 1 ) ) ) ) ) = ( ( ( FermatNo ` ( N - 1 ) ) ^ 2 ) - ( ( 2 ^ ( 2 ^ ( N - 1 ) ) ) x. 2 ) ) ) |
| 103 |
85 88 102
|
3eqtrd |
|- ( N e. ( ZZ>= ` 2 ) -> ( ( ( ( FermatNo ` ( N - 1 ) ) ^ 2 ) - ( 2 x. ( FermatNo ` ( N - 1 ) ) ) ) + ( 2 x. 1 ) ) = ( ( ( FermatNo ` ( N - 1 ) ) ^ 2 ) - ( ( 2 ^ ( 2 ^ ( N - 1 ) ) ) x. 2 ) ) ) |
| 104 |
72 82 103
|
3eqtrd |
|- ( N e. ( ZZ>= ` 2 ) -> ( ( ( ( FermatNo ` ( N - 1 ) ) - 1 ) ^ 2 ) + 1 ) = ( ( ( FermatNo ` ( N - 1 ) ) ^ 2 ) - ( ( 2 ^ ( 2 ^ ( N - 1 ) ) ) x. 2 ) ) ) |
| 105 |
67 69 104
|
3eqtrrd |
|- ( N e. ( ZZ>= ` 2 ) -> ( ( ( FermatNo ` ( N - 1 ) ) ^ 2 ) - ( ( 2 ^ ( 2 ^ ( N - 1 ) ) ) x. 2 ) ) = ( FermatNo ` N ) ) |
| 106 |
60 63 105
|
3eqtr3d |
|- ( N e. ( ZZ>= ` 2 ) -> ( ( FermatNo ` ( N - 1 ) ) + ( ( ( 2 ^ ( 2 ^ ( N - 1 ) ) ) x. ( FermatNo ` ( N - 1 ) ) ) - ( ( 2 ^ ( 2 ^ ( N - 1 ) ) ) x. 2 ) ) ) = ( FermatNo ` N ) ) |
| 107 |
16 44 106
|
3eqtrrd |
|- ( N e. ( ZZ>= ` 2 ) -> ( FermatNo ` N ) = ( ( FermatNo ` ( N - 1 ) ) + ( ( 2 ^ ( 2 ^ ( N - 1 ) ) ) x. prod_ n e. ( 0 ... ( N - 2 ) ) ( FermatNo ` n ) ) ) ) |