Step |
Hyp |
Ref |
Expression |
1 |
|
peano2nn0 |
|- ( N e. NN0 -> ( N + 1 ) e. NN0 ) |
2 |
|
fmtno |
|- ( ( N + 1 ) e. NN0 -> ( FermatNo ` ( N + 1 ) ) = ( ( 2 ^ ( 2 ^ ( N + 1 ) ) ) + 1 ) ) |
3 |
1 2
|
syl |
|- ( N e. NN0 -> ( FermatNo ` ( N + 1 ) ) = ( ( 2 ^ ( 2 ^ ( N + 1 ) ) ) + 1 ) ) |
4 |
|
2nn0 |
|- 2 e. NN0 |
5 |
|
nn0expcl |
|- ( ( 2 e. NN0 /\ N e. NN0 ) -> ( 2 ^ N ) e. NN0 ) |
6 |
4 5
|
mpan |
|- ( N e. NN0 -> ( 2 ^ N ) e. NN0 ) |
7 |
|
nn0expcl |
|- ( ( 2 e. NN0 /\ ( 2 ^ N ) e. NN0 ) -> ( 2 ^ ( 2 ^ N ) ) e. NN0 ) |
8 |
7
|
nn0cnd |
|- ( ( 2 e. NN0 /\ ( 2 ^ N ) e. NN0 ) -> ( 2 ^ ( 2 ^ N ) ) e. CC ) |
9 |
4 6 8
|
sylancr |
|- ( N e. NN0 -> ( 2 ^ ( 2 ^ N ) ) e. CC ) |
10 |
|
pncan1 |
|- ( ( 2 ^ ( 2 ^ N ) ) e. CC -> ( ( ( 2 ^ ( 2 ^ N ) ) + 1 ) - 1 ) = ( 2 ^ ( 2 ^ N ) ) ) |
11 |
9 10
|
syl |
|- ( N e. NN0 -> ( ( ( 2 ^ ( 2 ^ N ) ) + 1 ) - 1 ) = ( 2 ^ ( 2 ^ N ) ) ) |
12 |
11
|
oveq1d |
|- ( N e. NN0 -> ( ( ( ( 2 ^ ( 2 ^ N ) ) + 1 ) - 1 ) ^ 2 ) = ( ( 2 ^ ( 2 ^ N ) ) ^ 2 ) ) |
13 |
|
2cnne0 |
|- ( 2 e. CC /\ 2 =/= 0 ) |
14 |
6
|
nn0zd |
|- ( N e. NN0 -> ( 2 ^ N ) e. ZZ ) |
15 |
|
2z |
|- 2 e. ZZ |
16 |
14 15
|
jctir |
|- ( N e. NN0 -> ( ( 2 ^ N ) e. ZZ /\ 2 e. ZZ ) ) |
17 |
|
expmulz |
|- ( ( ( 2 e. CC /\ 2 =/= 0 ) /\ ( ( 2 ^ N ) e. ZZ /\ 2 e. ZZ ) ) -> ( 2 ^ ( ( 2 ^ N ) x. 2 ) ) = ( ( 2 ^ ( 2 ^ N ) ) ^ 2 ) ) |
18 |
13 16 17
|
sylancr |
|- ( N e. NN0 -> ( 2 ^ ( ( 2 ^ N ) x. 2 ) ) = ( ( 2 ^ ( 2 ^ N ) ) ^ 2 ) ) |
19 |
|
2cn |
|- 2 e. CC |
20 |
|
2ne0 |
|- 2 =/= 0 |
21 |
|
nn0z |
|- ( N e. NN0 -> N e. ZZ ) |
22 |
|
expp1z |
|- ( ( 2 e. CC /\ 2 =/= 0 /\ N e. ZZ ) -> ( 2 ^ ( N + 1 ) ) = ( ( 2 ^ N ) x. 2 ) ) |
23 |
19 20 21 22
|
mp3an12i |
|- ( N e. NN0 -> ( 2 ^ ( N + 1 ) ) = ( ( 2 ^ N ) x. 2 ) ) |
24 |
23
|
eqcomd |
|- ( N e. NN0 -> ( ( 2 ^ N ) x. 2 ) = ( 2 ^ ( N + 1 ) ) ) |
25 |
24
|
oveq2d |
|- ( N e. NN0 -> ( 2 ^ ( ( 2 ^ N ) x. 2 ) ) = ( 2 ^ ( 2 ^ ( N + 1 ) ) ) ) |
26 |
12 18 25
|
3eqtr2rd |
|- ( N e. NN0 -> ( 2 ^ ( 2 ^ ( N + 1 ) ) ) = ( ( ( ( 2 ^ ( 2 ^ N ) ) + 1 ) - 1 ) ^ 2 ) ) |
27 |
26
|
oveq1d |
|- ( N e. NN0 -> ( ( 2 ^ ( 2 ^ ( N + 1 ) ) ) + 1 ) = ( ( ( ( ( 2 ^ ( 2 ^ N ) ) + 1 ) - 1 ) ^ 2 ) + 1 ) ) |
28 |
|
fmtno |
|- ( N e. NN0 -> ( FermatNo ` N ) = ( ( 2 ^ ( 2 ^ N ) ) + 1 ) ) |
29 |
28
|
eqcomd |
|- ( N e. NN0 -> ( ( 2 ^ ( 2 ^ N ) ) + 1 ) = ( FermatNo ` N ) ) |
30 |
29
|
oveq1d |
|- ( N e. NN0 -> ( ( ( 2 ^ ( 2 ^ N ) ) + 1 ) - 1 ) = ( ( FermatNo ` N ) - 1 ) ) |
31 |
30
|
oveq1d |
|- ( N e. NN0 -> ( ( ( ( 2 ^ ( 2 ^ N ) ) + 1 ) - 1 ) ^ 2 ) = ( ( ( FermatNo ` N ) - 1 ) ^ 2 ) ) |
32 |
31
|
oveq1d |
|- ( N e. NN0 -> ( ( ( ( ( 2 ^ ( 2 ^ N ) ) + 1 ) - 1 ) ^ 2 ) + 1 ) = ( ( ( ( FermatNo ` N ) - 1 ) ^ 2 ) + 1 ) ) |
33 |
3 27 32
|
3eqtrd |
|- ( N e. NN0 -> ( FermatNo ` ( N + 1 ) ) = ( ( ( ( FermatNo ` N ) - 1 ) ^ 2 ) + 1 ) ) |