Description: The first recurrence relation for Fermat numbers, see Wikipedia "Fermat number", https://en.wikipedia.org/wiki/Fermat_number#Basic_properties , 22-Jul-2021. (Contributed by AV, 22-Jul-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | fmtnorec1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | peano2nn0 | |
|
2 | fmtno | |
|
3 | 1 2 | syl | |
4 | 2nn0 | |
|
5 | nn0expcl | |
|
6 | 4 5 | mpan | |
7 | nn0expcl | |
|
8 | 7 | nn0cnd | |
9 | 4 6 8 | sylancr | |
10 | pncan1 | |
|
11 | 9 10 | syl | |
12 | 11 | oveq1d | |
13 | 2cnne0 | |
|
14 | 6 | nn0zd | |
15 | 2z | |
|
16 | 14 15 | jctir | |
17 | expmulz | |
|
18 | 13 16 17 | sylancr | |
19 | 2cn | |
|
20 | 2ne0 | |
|
21 | nn0z | |
|
22 | expp1z | |
|
23 | 19 20 21 22 | mp3an12i | |
24 | 23 | eqcomd | |
25 | 24 | oveq2d | |
26 | 12 18 25 | 3eqtr2rd | |
27 | 26 | oveq1d | |
28 | fmtno | |
|
29 | 28 | eqcomd | |
30 | 29 | oveq1d | |
31 | 30 | oveq1d | |
32 | 31 | oveq1d | |
33 | 3 27 32 | 3eqtrd | |