Metamath Proof Explorer


Theorem fmtnorec1

Description: The first recurrence relation for Fermat numbers, see Wikipedia "Fermat number", https://en.wikipedia.org/wiki/Fermat_number#Basic_properties , 22-Jul-2021. (Contributed by AV, 22-Jul-2021)

Ref Expression
Assertion fmtnorec1 N0FermatNoN+1=FermatNoN12+1

Proof

Step Hyp Ref Expression
1 peano2nn0 N0N+10
2 fmtno N+10FermatNoN+1=22N+1+1
3 1 2 syl N0FermatNoN+1=22N+1+1
4 2nn0 20
5 nn0expcl 20N02N0
6 4 5 mpan N02N0
7 nn0expcl 202N022N0
8 7 nn0cnd 202N022N
9 4 6 8 sylancr N022N
10 pncan1 22N22N+1-1=22N
11 9 10 syl N022N+1-1=22N
12 11 oveq1d N022N+1-12=22N2
13 2cnne0 220
14 6 nn0zd N02N
15 2z 2
16 14 15 jctir N02N2
17 expmulz 2202N222N2=22N2
18 13 16 17 sylancr N022N2=22N2
19 2cn 2
20 2ne0 20
21 nn0z N0N
22 expp1z 220N2N+1=2N2
23 19 20 21 22 mp3an12i N02N+1=2N2
24 23 eqcomd N02N2=2N+1
25 24 oveq2d N022N2=22N+1
26 12 18 25 3eqtr2rd N022N+1=22N+1-12
27 26 oveq1d N022N+1+1=22N+1-12+1
28 fmtno N0FermatNoN=22N+1
29 28 eqcomd N022N+1=FermatNoN
30 29 oveq1d N022N+1-1=FermatNoN1
31 30 oveq1d N022N+1-12=FermatNoN12
32 31 oveq1d N022N+1-12+1=FermatNoN12+1
33 3 27 32 3eqtrd N0FermatNoN+1=FermatNoN12+1