| Step | Hyp | Ref | Expression | 
						
							| 1 |  | peano2nn0 | ⊢ ( 𝑁  ∈  ℕ0  →  ( 𝑁  +  1 )  ∈  ℕ0 ) | 
						
							| 2 |  | fmtno | ⊢ ( ( 𝑁  +  1 )  ∈  ℕ0  →  ( FermatNo ‘ ( 𝑁  +  1 ) )  =  ( ( 2 ↑ ( 2 ↑ ( 𝑁  +  1 ) ) )  +  1 ) ) | 
						
							| 3 | 1 2 | syl | ⊢ ( 𝑁  ∈  ℕ0  →  ( FermatNo ‘ ( 𝑁  +  1 ) )  =  ( ( 2 ↑ ( 2 ↑ ( 𝑁  +  1 ) ) )  +  1 ) ) | 
						
							| 4 |  | 2nn0 | ⊢ 2  ∈  ℕ0 | 
						
							| 5 |  | nn0expcl | ⊢ ( ( 2  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  →  ( 2 ↑ 𝑁 )  ∈  ℕ0 ) | 
						
							| 6 | 4 5 | mpan | ⊢ ( 𝑁  ∈  ℕ0  →  ( 2 ↑ 𝑁 )  ∈  ℕ0 ) | 
						
							| 7 |  | nn0expcl | ⊢ ( ( 2  ∈  ℕ0  ∧  ( 2 ↑ 𝑁 )  ∈  ℕ0 )  →  ( 2 ↑ ( 2 ↑ 𝑁 ) )  ∈  ℕ0 ) | 
						
							| 8 | 7 | nn0cnd | ⊢ ( ( 2  ∈  ℕ0  ∧  ( 2 ↑ 𝑁 )  ∈  ℕ0 )  →  ( 2 ↑ ( 2 ↑ 𝑁 ) )  ∈  ℂ ) | 
						
							| 9 | 4 6 8 | sylancr | ⊢ ( 𝑁  ∈  ℕ0  →  ( 2 ↑ ( 2 ↑ 𝑁 ) )  ∈  ℂ ) | 
						
							| 10 |  | pncan1 | ⊢ ( ( 2 ↑ ( 2 ↑ 𝑁 ) )  ∈  ℂ  →  ( ( ( 2 ↑ ( 2 ↑ 𝑁 ) )  +  1 )  −  1 )  =  ( 2 ↑ ( 2 ↑ 𝑁 ) ) ) | 
						
							| 11 | 9 10 | syl | ⊢ ( 𝑁  ∈  ℕ0  →  ( ( ( 2 ↑ ( 2 ↑ 𝑁 ) )  +  1 )  −  1 )  =  ( 2 ↑ ( 2 ↑ 𝑁 ) ) ) | 
						
							| 12 | 11 | oveq1d | ⊢ ( 𝑁  ∈  ℕ0  →  ( ( ( ( 2 ↑ ( 2 ↑ 𝑁 ) )  +  1 )  −  1 ) ↑ 2 )  =  ( ( 2 ↑ ( 2 ↑ 𝑁 ) ) ↑ 2 ) ) | 
						
							| 13 |  | 2cnne0 | ⊢ ( 2  ∈  ℂ  ∧  2  ≠  0 ) | 
						
							| 14 | 6 | nn0zd | ⊢ ( 𝑁  ∈  ℕ0  →  ( 2 ↑ 𝑁 )  ∈  ℤ ) | 
						
							| 15 |  | 2z | ⊢ 2  ∈  ℤ | 
						
							| 16 | 14 15 | jctir | ⊢ ( 𝑁  ∈  ℕ0  →  ( ( 2 ↑ 𝑁 )  ∈  ℤ  ∧  2  ∈  ℤ ) ) | 
						
							| 17 |  | expmulz | ⊢ ( ( ( 2  ∈  ℂ  ∧  2  ≠  0 )  ∧  ( ( 2 ↑ 𝑁 )  ∈  ℤ  ∧  2  ∈  ℤ ) )  →  ( 2 ↑ ( ( 2 ↑ 𝑁 )  ·  2 ) )  =  ( ( 2 ↑ ( 2 ↑ 𝑁 ) ) ↑ 2 ) ) | 
						
							| 18 | 13 16 17 | sylancr | ⊢ ( 𝑁  ∈  ℕ0  →  ( 2 ↑ ( ( 2 ↑ 𝑁 )  ·  2 ) )  =  ( ( 2 ↑ ( 2 ↑ 𝑁 ) ) ↑ 2 ) ) | 
						
							| 19 |  | 2cn | ⊢ 2  ∈  ℂ | 
						
							| 20 |  | 2ne0 | ⊢ 2  ≠  0 | 
						
							| 21 |  | nn0z | ⊢ ( 𝑁  ∈  ℕ0  →  𝑁  ∈  ℤ ) | 
						
							| 22 |  | expp1z | ⊢ ( ( 2  ∈  ℂ  ∧  2  ≠  0  ∧  𝑁  ∈  ℤ )  →  ( 2 ↑ ( 𝑁  +  1 ) )  =  ( ( 2 ↑ 𝑁 )  ·  2 ) ) | 
						
							| 23 | 19 20 21 22 | mp3an12i | ⊢ ( 𝑁  ∈  ℕ0  →  ( 2 ↑ ( 𝑁  +  1 ) )  =  ( ( 2 ↑ 𝑁 )  ·  2 ) ) | 
						
							| 24 | 23 | eqcomd | ⊢ ( 𝑁  ∈  ℕ0  →  ( ( 2 ↑ 𝑁 )  ·  2 )  =  ( 2 ↑ ( 𝑁  +  1 ) ) ) | 
						
							| 25 | 24 | oveq2d | ⊢ ( 𝑁  ∈  ℕ0  →  ( 2 ↑ ( ( 2 ↑ 𝑁 )  ·  2 ) )  =  ( 2 ↑ ( 2 ↑ ( 𝑁  +  1 ) ) ) ) | 
						
							| 26 | 12 18 25 | 3eqtr2rd | ⊢ ( 𝑁  ∈  ℕ0  →  ( 2 ↑ ( 2 ↑ ( 𝑁  +  1 ) ) )  =  ( ( ( ( 2 ↑ ( 2 ↑ 𝑁 ) )  +  1 )  −  1 ) ↑ 2 ) ) | 
						
							| 27 | 26 | oveq1d | ⊢ ( 𝑁  ∈  ℕ0  →  ( ( 2 ↑ ( 2 ↑ ( 𝑁  +  1 ) ) )  +  1 )  =  ( ( ( ( ( 2 ↑ ( 2 ↑ 𝑁 ) )  +  1 )  −  1 ) ↑ 2 )  +  1 ) ) | 
						
							| 28 |  | fmtno | ⊢ ( 𝑁  ∈  ℕ0  →  ( FermatNo ‘ 𝑁 )  =  ( ( 2 ↑ ( 2 ↑ 𝑁 ) )  +  1 ) ) | 
						
							| 29 | 28 | eqcomd | ⊢ ( 𝑁  ∈  ℕ0  →  ( ( 2 ↑ ( 2 ↑ 𝑁 ) )  +  1 )  =  ( FermatNo ‘ 𝑁 ) ) | 
						
							| 30 | 29 | oveq1d | ⊢ ( 𝑁  ∈  ℕ0  →  ( ( ( 2 ↑ ( 2 ↑ 𝑁 ) )  +  1 )  −  1 )  =  ( ( FermatNo ‘ 𝑁 )  −  1 ) ) | 
						
							| 31 | 30 | oveq1d | ⊢ ( 𝑁  ∈  ℕ0  →  ( ( ( ( 2 ↑ ( 2 ↑ 𝑁 ) )  +  1 )  −  1 ) ↑ 2 )  =  ( ( ( FermatNo ‘ 𝑁 )  −  1 ) ↑ 2 ) ) | 
						
							| 32 | 31 | oveq1d | ⊢ ( 𝑁  ∈  ℕ0  →  ( ( ( ( ( 2 ↑ ( 2 ↑ 𝑁 ) )  +  1 )  −  1 ) ↑ 2 )  +  1 )  =  ( ( ( ( FermatNo ‘ 𝑁 )  −  1 ) ↑ 2 )  +  1 ) ) | 
						
							| 33 | 3 27 32 | 3eqtrd | ⊢ ( 𝑁  ∈  ℕ0  →  ( FermatNo ‘ ( 𝑁  +  1 ) )  =  ( ( ( ( FermatNo ‘ 𝑁 )  −  1 ) ↑ 2 )  +  1 ) ) |