| Step |
Hyp |
Ref |
Expression |
| 1 |
|
peano2nn0 |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 + 1 ) ∈ ℕ0 ) |
| 2 |
|
fmtno |
⊢ ( ( 𝑁 + 1 ) ∈ ℕ0 → ( FermatNo ‘ ( 𝑁 + 1 ) ) = ( ( 2 ↑ ( 2 ↑ ( 𝑁 + 1 ) ) ) + 1 ) ) |
| 3 |
1 2
|
syl |
⊢ ( 𝑁 ∈ ℕ0 → ( FermatNo ‘ ( 𝑁 + 1 ) ) = ( ( 2 ↑ ( 2 ↑ ( 𝑁 + 1 ) ) ) + 1 ) ) |
| 4 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
| 5 |
|
nn0expcl |
⊢ ( ( 2 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( 2 ↑ 𝑁 ) ∈ ℕ0 ) |
| 6 |
4 5
|
mpan |
⊢ ( 𝑁 ∈ ℕ0 → ( 2 ↑ 𝑁 ) ∈ ℕ0 ) |
| 7 |
|
nn0expcl |
⊢ ( ( 2 ∈ ℕ0 ∧ ( 2 ↑ 𝑁 ) ∈ ℕ0 ) → ( 2 ↑ ( 2 ↑ 𝑁 ) ) ∈ ℕ0 ) |
| 8 |
7
|
nn0cnd |
⊢ ( ( 2 ∈ ℕ0 ∧ ( 2 ↑ 𝑁 ) ∈ ℕ0 ) → ( 2 ↑ ( 2 ↑ 𝑁 ) ) ∈ ℂ ) |
| 9 |
4 6 8
|
sylancr |
⊢ ( 𝑁 ∈ ℕ0 → ( 2 ↑ ( 2 ↑ 𝑁 ) ) ∈ ℂ ) |
| 10 |
|
pncan1 |
⊢ ( ( 2 ↑ ( 2 ↑ 𝑁 ) ) ∈ ℂ → ( ( ( 2 ↑ ( 2 ↑ 𝑁 ) ) + 1 ) − 1 ) = ( 2 ↑ ( 2 ↑ 𝑁 ) ) ) |
| 11 |
9 10
|
syl |
⊢ ( 𝑁 ∈ ℕ0 → ( ( ( 2 ↑ ( 2 ↑ 𝑁 ) ) + 1 ) − 1 ) = ( 2 ↑ ( 2 ↑ 𝑁 ) ) ) |
| 12 |
11
|
oveq1d |
⊢ ( 𝑁 ∈ ℕ0 → ( ( ( ( 2 ↑ ( 2 ↑ 𝑁 ) ) + 1 ) − 1 ) ↑ 2 ) = ( ( 2 ↑ ( 2 ↑ 𝑁 ) ) ↑ 2 ) ) |
| 13 |
|
2cnne0 |
⊢ ( 2 ∈ ℂ ∧ 2 ≠ 0 ) |
| 14 |
6
|
nn0zd |
⊢ ( 𝑁 ∈ ℕ0 → ( 2 ↑ 𝑁 ) ∈ ℤ ) |
| 15 |
|
2z |
⊢ 2 ∈ ℤ |
| 16 |
14 15
|
jctir |
⊢ ( 𝑁 ∈ ℕ0 → ( ( 2 ↑ 𝑁 ) ∈ ℤ ∧ 2 ∈ ℤ ) ) |
| 17 |
|
expmulz |
⊢ ( ( ( 2 ∈ ℂ ∧ 2 ≠ 0 ) ∧ ( ( 2 ↑ 𝑁 ) ∈ ℤ ∧ 2 ∈ ℤ ) ) → ( 2 ↑ ( ( 2 ↑ 𝑁 ) · 2 ) ) = ( ( 2 ↑ ( 2 ↑ 𝑁 ) ) ↑ 2 ) ) |
| 18 |
13 16 17
|
sylancr |
⊢ ( 𝑁 ∈ ℕ0 → ( 2 ↑ ( ( 2 ↑ 𝑁 ) · 2 ) ) = ( ( 2 ↑ ( 2 ↑ 𝑁 ) ) ↑ 2 ) ) |
| 19 |
|
2cn |
⊢ 2 ∈ ℂ |
| 20 |
|
2ne0 |
⊢ 2 ≠ 0 |
| 21 |
|
nn0z |
⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ ) |
| 22 |
|
expp1z |
⊢ ( ( 2 ∈ ℂ ∧ 2 ≠ 0 ∧ 𝑁 ∈ ℤ ) → ( 2 ↑ ( 𝑁 + 1 ) ) = ( ( 2 ↑ 𝑁 ) · 2 ) ) |
| 23 |
19 20 21 22
|
mp3an12i |
⊢ ( 𝑁 ∈ ℕ0 → ( 2 ↑ ( 𝑁 + 1 ) ) = ( ( 2 ↑ 𝑁 ) · 2 ) ) |
| 24 |
23
|
eqcomd |
⊢ ( 𝑁 ∈ ℕ0 → ( ( 2 ↑ 𝑁 ) · 2 ) = ( 2 ↑ ( 𝑁 + 1 ) ) ) |
| 25 |
24
|
oveq2d |
⊢ ( 𝑁 ∈ ℕ0 → ( 2 ↑ ( ( 2 ↑ 𝑁 ) · 2 ) ) = ( 2 ↑ ( 2 ↑ ( 𝑁 + 1 ) ) ) ) |
| 26 |
12 18 25
|
3eqtr2rd |
⊢ ( 𝑁 ∈ ℕ0 → ( 2 ↑ ( 2 ↑ ( 𝑁 + 1 ) ) ) = ( ( ( ( 2 ↑ ( 2 ↑ 𝑁 ) ) + 1 ) − 1 ) ↑ 2 ) ) |
| 27 |
26
|
oveq1d |
⊢ ( 𝑁 ∈ ℕ0 → ( ( 2 ↑ ( 2 ↑ ( 𝑁 + 1 ) ) ) + 1 ) = ( ( ( ( ( 2 ↑ ( 2 ↑ 𝑁 ) ) + 1 ) − 1 ) ↑ 2 ) + 1 ) ) |
| 28 |
|
fmtno |
⊢ ( 𝑁 ∈ ℕ0 → ( FermatNo ‘ 𝑁 ) = ( ( 2 ↑ ( 2 ↑ 𝑁 ) ) + 1 ) ) |
| 29 |
28
|
eqcomd |
⊢ ( 𝑁 ∈ ℕ0 → ( ( 2 ↑ ( 2 ↑ 𝑁 ) ) + 1 ) = ( FermatNo ‘ 𝑁 ) ) |
| 30 |
29
|
oveq1d |
⊢ ( 𝑁 ∈ ℕ0 → ( ( ( 2 ↑ ( 2 ↑ 𝑁 ) ) + 1 ) − 1 ) = ( ( FermatNo ‘ 𝑁 ) − 1 ) ) |
| 31 |
30
|
oveq1d |
⊢ ( 𝑁 ∈ ℕ0 → ( ( ( ( 2 ↑ ( 2 ↑ 𝑁 ) ) + 1 ) − 1 ) ↑ 2 ) = ( ( ( FermatNo ‘ 𝑁 ) − 1 ) ↑ 2 ) ) |
| 32 |
31
|
oveq1d |
⊢ ( 𝑁 ∈ ℕ0 → ( ( ( ( ( 2 ↑ ( 2 ↑ 𝑁 ) ) + 1 ) − 1 ) ↑ 2 ) + 1 ) = ( ( ( ( FermatNo ‘ 𝑁 ) − 1 ) ↑ 2 ) + 1 ) ) |
| 33 |
3 27 32
|
3eqtrd |
⊢ ( 𝑁 ∈ ℕ0 → ( FermatNo ‘ ( 𝑁 + 1 ) ) = ( ( ( ( FermatNo ‘ 𝑁 ) − 1 ) ↑ 2 ) + 1 ) ) |