| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fmtnorn |
⊢ ( 𝐹 ∈ ran FermatNo ↔ ∃ 𝑛 ∈ ℕ0 ( FermatNo ‘ 𝑛 ) = 𝐹 ) |
| 2 |
|
fmtnorn |
⊢ ( 𝐺 ∈ ran FermatNo ↔ ∃ 𝑚 ∈ ℕ0 ( FermatNo ‘ 𝑚 ) = 𝐺 ) |
| 3 |
|
2a1 |
⊢ ( 𝐹 = 𝐺 → ( ( FermatNo ‘ 𝑛 ) = 𝐹 → ( ( 𝐼 ∈ ℙ ∧ 𝐼 ∥ 𝐹 ∧ 𝐼 ∥ 𝐺 ) → 𝐹 = 𝐺 ) ) ) |
| 4 |
3
|
2a1d |
⊢ ( 𝐹 = 𝐺 → ( ( 𝑛 ∈ ℕ0 ∧ 𝑚 ∈ ℕ0 ) → ( ( FermatNo ‘ 𝑚 ) = 𝐺 → ( ( FermatNo ‘ 𝑛 ) = 𝐹 → ( ( 𝐼 ∈ ℙ ∧ 𝐼 ∥ 𝐹 ∧ 𝐼 ∥ 𝐺 ) → 𝐹 = 𝐺 ) ) ) ) ) |
| 5 |
|
fmtnonn |
⊢ ( 𝑛 ∈ ℕ0 → ( FermatNo ‘ 𝑛 ) ∈ ℕ ) |
| 6 |
5
|
ad2antrl |
⊢ ( ( ¬ 𝐹 = 𝐺 ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑚 ∈ ℕ0 ) ) → ( FermatNo ‘ 𝑛 ) ∈ ℕ ) |
| 7 |
6
|
adantr |
⊢ ( ( ( ¬ 𝐹 = 𝐺 ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑚 ∈ ℕ0 ) ) ∧ ( ( FermatNo ‘ 𝑚 ) = 𝐺 ∧ ( FermatNo ‘ 𝑛 ) = 𝐹 ) ) → ( FermatNo ‘ 𝑛 ) ∈ ℕ ) |
| 8 |
|
eleq1 |
⊢ ( ( FermatNo ‘ 𝑛 ) = 𝐹 → ( ( FermatNo ‘ 𝑛 ) ∈ ℕ ↔ 𝐹 ∈ ℕ ) ) |
| 9 |
8
|
ad2antll |
⊢ ( ( ( ¬ 𝐹 = 𝐺 ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑚 ∈ ℕ0 ) ) ∧ ( ( FermatNo ‘ 𝑚 ) = 𝐺 ∧ ( FermatNo ‘ 𝑛 ) = 𝐹 ) ) → ( ( FermatNo ‘ 𝑛 ) ∈ ℕ ↔ 𝐹 ∈ ℕ ) ) |
| 10 |
7 9
|
mpbid |
⊢ ( ( ( ¬ 𝐹 = 𝐺 ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑚 ∈ ℕ0 ) ) ∧ ( ( FermatNo ‘ 𝑚 ) = 𝐺 ∧ ( FermatNo ‘ 𝑛 ) = 𝐹 ) ) → 𝐹 ∈ ℕ ) |
| 11 |
|
fmtnonn |
⊢ ( 𝑚 ∈ ℕ0 → ( FermatNo ‘ 𝑚 ) ∈ ℕ ) |
| 12 |
11
|
ad2antll |
⊢ ( ( ¬ 𝐹 = 𝐺 ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑚 ∈ ℕ0 ) ) → ( FermatNo ‘ 𝑚 ) ∈ ℕ ) |
| 13 |
12
|
adantr |
⊢ ( ( ( ¬ 𝐹 = 𝐺 ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑚 ∈ ℕ0 ) ) ∧ ( ( FermatNo ‘ 𝑚 ) = 𝐺 ∧ ( FermatNo ‘ 𝑛 ) = 𝐹 ) ) → ( FermatNo ‘ 𝑚 ) ∈ ℕ ) |
| 14 |
|
eleq1 |
⊢ ( ( FermatNo ‘ 𝑚 ) = 𝐺 → ( ( FermatNo ‘ 𝑚 ) ∈ ℕ ↔ 𝐺 ∈ ℕ ) ) |
| 15 |
14
|
ad2antrl |
⊢ ( ( ( ¬ 𝐹 = 𝐺 ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑚 ∈ ℕ0 ) ) ∧ ( ( FermatNo ‘ 𝑚 ) = 𝐺 ∧ ( FermatNo ‘ 𝑛 ) = 𝐹 ) ) → ( ( FermatNo ‘ 𝑚 ) ∈ ℕ ↔ 𝐺 ∈ ℕ ) ) |
| 16 |
13 15
|
mpbid |
⊢ ( ( ( ¬ 𝐹 = 𝐺 ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑚 ∈ ℕ0 ) ) ∧ ( ( FermatNo ‘ 𝑚 ) = 𝐺 ∧ ( FermatNo ‘ 𝑛 ) = 𝐹 ) ) → 𝐺 ∈ ℕ ) |
| 17 |
|
simpll |
⊢ ( ( ( 𝑛 ∈ ℕ0 ∧ 𝑚 ∈ ℕ0 ) ∧ ¬ ( FermatNo ‘ 𝑛 ) = ( FermatNo ‘ 𝑚 ) ) → 𝑛 ∈ ℕ0 ) |
| 18 |
|
simplr |
⊢ ( ( ( 𝑛 ∈ ℕ0 ∧ 𝑚 ∈ ℕ0 ) ∧ ¬ ( FermatNo ‘ 𝑛 ) = ( FermatNo ‘ 𝑚 ) ) → 𝑚 ∈ ℕ0 ) |
| 19 |
|
fveq2 |
⊢ ( 𝑛 = 𝑚 → ( FermatNo ‘ 𝑛 ) = ( FermatNo ‘ 𝑚 ) ) |
| 20 |
19
|
con3i |
⊢ ( ¬ ( FermatNo ‘ 𝑛 ) = ( FermatNo ‘ 𝑚 ) → ¬ 𝑛 = 𝑚 ) |
| 21 |
20
|
adantl |
⊢ ( ( ( 𝑛 ∈ ℕ0 ∧ 𝑚 ∈ ℕ0 ) ∧ ¬ ( FermatNo ‘ 𝑛 ) = ( FermatNo ‘ 𝑚 ) ) → ¬ 𝑛 = 𝑚 ) |
| 22 |
21
|
neqned |
⊢ ( ( ( 𝑛 ∈ ℕ0 ∧ 𝑚 ∈ ℕ0 ) ∧ ¬ ( FermatNo ‘ 𝑛 ) = ( FermatNo ‘ 𝑚 ) ) → 𝑛 ≠ 𝑚 ) |
| 23 |
|
goldbachth |
⊢ ( ( 𝑛 ∈ ℕ0 ∧ 𝑚 ∈ ℕ0 ∧ 𝑛 ≠ 𝑚 ) → ( ( FermatNo ‘ 𝑛 ) gcd ( FermatNo ‘ 𝑚 ) ) = 1 ) |
| 24 |
17 18 22 23
|
syl3anc |
⊢ ( ( ( 𝑛 ∈ ℕ0 ∧ 𝑚 ∈ ℕ0 ) ∧ ¬ ( FermatNo ‘ 𝑛 ) = ( FermatNo ‘ 𝑚 ) ) → ( ( FermatNo ‘ 𝑛 ) gcd ( FermatNo ‘ 𝑚 ) ) = 1 ) |
| 25 |
24
|
ex |
⊢ ( ( 𝑛 ∈ ℕ0 ∧ 𝑚 ∈ ℕ0 ) → ( ¬ ( FermatNo ‘ 𝑛 ) = ( FermatNo ‘ 𝑚 ) → ( ( FermatNo ‘ 𝑛 ) gcd ( FermatNo ‘ 𝑚 ) ) = 1 ) ) |
| 26 |
|
eqeq12 |
⊢ ( ( ( FermatNo ‘ 𝑛 ) = 𝐹 ∧ ( FermatNo ‘ 𝑚 ) = 𝐺 ) → ( ( FermatNo ‘ 𝑛 ) = ( FermatNo ‘ 𝑚 ) ↔ 𝐹 = 𝐺 ) ) |
| 27 |
26
|
notbid |
⊢ ( ( ( FermatNo ‘ 𝑛 ) = 𝐹 ∧ ( FermatNo ‘ 𝑚 ) = 𝐺 ) → ( ¬ ( FermatNo ‘ 𝑛 ) = ( FermatNo ‘ 𝑚 ) ↔ ¬ 𝐹 = 𝐺 ) ) |
| 28 |
|
oveq12 |
⊢ ( ( ( FermatNo ‘ 𝑛 ) = 𝐹 ∧ ( FermatNo ‘ 𝑚 ) = 𝐺 ) → ( ( FermatNo ‘ 𝑛 ) gcd ( FermatNo ‘ 𝑚 ) ) = ( 𝐹 gcd 𝐺 ) ) |
| 29 |
28
|
eqeq1d |
⊢ ( ( ( FermatNo ‘ 𝑛 ) = 𝐹 ∧ ( FermatNo ‘ 𝑚 ) = 𝐺 ) → ( ( ( FermatNo ‘ 𝑛 ) gcd ( FermatNo ‘ 𝑚 ) ) = 1 ↔ ( 𝐹 gcd 𝐺 ) = 1 ) ) |
| 30 |
27 29
|
imbi12d |
⊢ ( ( ( FermatNo ‘ 𝑛 ) = 𝐹 ∧ ( FermatNo ‘ 𝑚 ) = 𝐺 ) → ( ( ¬ ( FermatNo ‘ 𝑛 ) = ( FermatNo ‘ 𝑚 ) → ( ( FermatNo ‘ 𝑛 ) gcd ( FermatNo ‘ 𝑚 ) ) = 1 ) ↔ ( ¬ 𝐹 = 𝐺 → ( 𝐹 gcd 𝐺 ) = 1 ) ) ) |
| 31 |
30
|
ancoms |
⊢ ( ( ( FermatNo ‘ 𝑚 ) = 𝐺 ∧ ( FermatNo ‘ 𝑛 ) = 𝐹 ) → ( ( ¬ ( FermatNo ‘ 𝑛 ) = ( FermatNo ‘ 𝑚 ) → ( ( FermatNo ‘ 𝑛 ) gcd ( FermatNo ‘ 𝑚 ) ) = 1 ) ↔ ( ¬ 𝐹 = 𝐺 → ( 𝐹 gcd 𝐺 ) = 1 ) ) ) |
| 32 |
25 31
|
syl5ibcom |
⊢ ( ( 𝑛 ∈ ℕ0 ∧ 𝑚 ∈ ℕ0 ) → ( ( ( FermatNo ‘ 𝑚 ) = 𝐺 ∧ ( FermatNo ‘ 𝑛 ) = 𝐹 ) → ( ¬ 𝐹 = 𝐺 → ( 𝐹 gcd 𝐺 ) = 1 ) ) ) |
| 33 |
32
|
com23 |
⊢ ( ( 𝑛 ∈ ℕ0 ∧ 𝑚 ∈ ℕ0 ) → ( ¬ 𝐹 = 𝐺 → ( ( ( FermatNo ‘ 𝑚 ) = 𝐺 ∧ ( FermatNo ‘ 𝑛 ) = 𝐹 ) → ( 𝐹 gcd 𝐺 ) = 1 ) ) ) |
| 34 |
33
|
impcom |
⊢ ( ( ¬ 𝐹 = 𝐺 ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑚 ∈ ℕ0 ) ) → ( ( ( FermatNo ‘ 𝑚 ) = 𝐺 ∧ ( FermatNo ‘ 𝑛 ) = 𝐹 ) → ( 𝐹 gcd 𝐺 ) = 1 ) ) |
| 35 |
34
|
imp |
⊢ ( ( ( ¬ 𝐹 = 𝐺 ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑚 ∈ ℕ0 ) ) ∧ ( ( FermatNo ‘ 𝑚 ) = 𝐺 ∧ ( FermatNo ‘ 𝑛 ) = 𝐹 ) ) → ( 𝐹 gcd 𝐺 ) = 1 ) |
| 36 |
|
prmnn |
⊢ ( 𝐼 ∈ ℙ → 𝐼 ∈ ℕ ) |
| 37 |
|
coprmdvds1 |
⊢ ( ( 𝐹 ∈ ℕ ∧ 𝐺 ∈ ℕ ∧ ( 𝐹 gcd 𝐺 ) = 1 ) → ( ( 𝐼 ∈ ℕ ∧ 𝐼 ∥ 𝐹 ∧ 𝐼 ∥ 𝐺 ) → 𝐼 = 1 ) ) |
| 38 |
37
|
imp |
⊢ ( ( ( 𝐹 ∈ ℕ ∧ 𝐺 ∈ ℕ ∧ ( 𝐹 gcd 𝐺 ) = 1 ) ∧ ( 𝐼 ∈ ℕ ∧ 𝐼 ∥ 𝐹 ∧ 𝐼 ∥ 𝐺 ) ) → 𝐼 = 1 ) |
| 39 |
36 38
|
syl3anr1 |
⊢ ( ( ( 𝐹 ∈ ℕ ∧ 𝐺 ∈ ℕ ∧ ( 𝐹 gcd 𝐺 ) = 1 ) ∧ ( 𝐼 ∈ ℙ ∧ 𝐼 ∥ 𝐹 ∧ 𝐼 ∥ 𝐺 ) ) → 𝐼 = 1 ) |
| 40 |
|
eleq1 |
⊢ ( 𝐼 = 1 → ( 𝐼 ∈ ℙ ↔ 1 ∈ ℙ ) ) |
| 41 |
|
1nprm |
⊢ ¬ 1 ∈ ℙ |
| 42 |
41
|
pm2.21i |
⊢ ( 1 ∈ ℙ → 𝐹 = 𝐺 ) |
| 43 |
40 42
|
biimtrdi |
⊢ ( 𝐼 = 1 → ( 𝐼 ∈ ℙ → 𝐹 = 𝐺 ) ) |
| 44 |
43
|
com12 |
⊢ ( 𝐼 ∈ ℙ → ( 𝐼 = 1 → 𝐹 = 𝐺 ) ) |
| 45 |
44
|
a1d |
⊢ ( 𝐼 ∈ ℙ → ( ( 𝐹 ∈ ℕ ∧ 𝐺 ∈ ℕ ∧ ( 𝐹 gcd 𝐺 ) = 1 ) → ( 𝐼 = 1 → 𝐹 = 𝐺 ) ) ) |
| 46 |
45
|
3ad2ant1 |
⊢ ( ( 𝐼 ∈ ℙ ∧ 𝐼 ∥ 𝐹 ∧ 𝐼 ∥ 𝐺 ) → ( ( 𝐹 ∈ ℕ ∧ 𝐺 ∈ ℕ ∧ ( 𝐹 gcd 𝐺 ) = 1 ) → ( 𝐼 = 1 → 𝐹 = 𝐺 ) ) ) |
| 47 |
46
|
impcom |
⊢ ( ( ( 𝐹 ∈ ℕ ∧ 𝐺 ∈ ℕ ∧ ( 𝐹 gcd 𝐺 ) = 1 ) ∧ ( 𝐼 ∈ ℙ ∧ 𝐼 ∥ 𝐹 ∧ 𝐼 ∥ 𝐺 ) ) → ( 𝐼 = 1 → 𝐹 = 𝐺 ) ) |
| 48 |
39 47
|
mpd |
⊢ ( ( ( 𝐹 ∈ ℕ ∧ 𝐺 ∈ ℕ ∧ ( 𝐹 gcd 𝐺 ) = 1 ) ∧ ( 𝐼 ∈ ℙ ∧ 𝐼 ∥ 𝐹 ∧ 𝐼 ∥ 𝐺 ) ) → 𝐹 = 𝐺 ) |
| 49 |
48
|
ex |
⊢ ( ( 𝐹 ∈ ℕ ∧ 𝐺 ∈ ℕ ∧ ( 𝐹 gcd 𝐺 ) = 1 ) → ( ( 𝐼 ∈ ℙ ∧ 𝐼 ∥ 𝐹 ∧ 𝐼 ∥ 𝐺 ) → 𝐹 = 𝐺 ) ) |
| 50 |
10 16 35 49
|
syl3anc |
⊢ ( ( ( ¬ 𝐹 = 𝐺 ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑚 ∈ ℕ0 ) ) ∧ ( ( FermatNo ‘ 𝑚 ) = 𝐺 ∧ ( FermatNo ‘ 𝑛 ) = 𝐹 ) ) → ( ( 𝐼 ∈ ℙ ∧ 𝐼 ∥ 𝐹 ∧ 𝐼 ∥ 𝐺 ) → 𝐹 = 𝐺 ) ) |
| 51 |
50
|
exp43 |
⊢ ( ¬ 𝐹 = 𝐺 → ( ( 𝑛 ∈ ℕ0 ∧ 𝑚 ∈ ℕ0 ) → ( ( FermatNo ‘ 𝑚 ) = 𝐺 → ( ( FermatNo ‘ 𝑛 ) = 𝐹 → ( ( 𝐼 ∈ ℙ ∧ 𝐼 ∥ 𝐹 ∧ 𝐼 ∥ 𝐺 ) → 𝐹 = 𝐺 ) ) ) ) ) |
| 52 |
4 51
|
pm2.61i |
⊢ ( ( 𝑛 ∈ ℕ0 ∧ 𝑚 ∈ ℕ0 ) → ( ( FermatNo ‘ 𝑚 ) = 𝐺 → ( ( FermatNo ‘ 𝑛 ) = 𝐹 → ( ( 𝐼 ∈ ℙ ∧ 𝐼 ∥ 𝐹 ∧ 𝐼 ∥ 𝐺 ) → 𝐹 = 𝐺 ) ) ) ) |
| 53 |
52
|
rexlimdva |
⊢ ( 𝑛 ∈ ℕ0 → ( ∃ 𝑚 ∈ ℕ0 ( FermatNo ‘ 𝑚 ) = 𝐺 → ( ( FermatNo ‘ 𝑛 ) = 𝐹 → ( ( 𝐼 ∈ ℙ ∧ 𝐼 ∥ 𝐹 ∧ 𝐼 ∥ 𝐺 ) → 𝐹 = 𝐺 ) ) ) ) |
| 54 |
53
|
com23 |
⊢ ( 𝑛 ∈ ℕ0 → ( ( FermatNo ‘ 𝑛 ) = 𝐹 → ( ∃ 𝑚 ∈ ℕ0 ( FermatNo ‘ 𝑚 ) = 𝐺 → ( ( 𝐼 ∈ ℙ ∧ 𝐼 ∥ 𝐹 ∧ 𝐼 ∥ 𝐺 ) → 𝐹 = 𝐺 ) ) ) ) |
| 55 |
54
|
rexlimiv |
⊢ ( ∃ 𝑛 ∈ ℕ0 ( FermatNo ‘ 𝑛 ) = 𝐹 → ( ∃ 𝑚 ∈ ℕ0 ( FermatNo ‘ 𝑚 ) = 𝐺 → ( ( 𝐼 ∈ ℙ ∧ 𝐼 ∥ 𝐹 ∧ 𝐼 ∥ 𝐺 ) → 𝐹 = 𝐺 ) ) ) |
| 56 |
55
|
imp |
⊢ ( ( ∃ 𝑛 ∈ ℕ0 ( FermatNo ‘ 𝑛 ) = 𝐹 ∧ ∃ 𝑚 ∈ ℕ0 ( FermatNo ‘ 𝑚 ) = 𝐺 ) → ( ( 𝐼 ∈ ℙ ∧ 𝐼 ∥ 𝐹 ∧ 𝐼 ∥ 𝐺 ) → 𝐹 = 𝐺 ) ) |
| 57 |
1 2 56
|
syl2anb |
⊢ ( ( 𝐹 ∈ ran FermatNo ∧ 𝐺 ∈ ran FermatNo ) → ( ( 𝐼 ∈ ℙ ∧ 𝐼 ∥ 𝐹 ∧ 𝐼 ∥ 𝐺 ) → 𝐹 = 𝐺 ) ) |