| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fmtnorn |
|
| 2 |
|
fmtnorn |
|
| 3 |
|
2a1 |
|
| 4 |
3
|
2a1d |
|
| 5 |
|
fmtnonn |
|
| 6 |
5
|
ad2antrl |
|
| 7 |
6
|
adantr |
|
| 8 |
|
eleq1 |
|
| 9 |
8
|
ad2antll |
|
| 10 |
7 9
|
mpbid |
|
| 11 |
|
fmtnonn |
|
| 12 |
11
|
ad2antll |
|
| 13 |
12
|
adantr |
|
| 14 |
|
eleq1 |
|
| 15 |
14
|
ad2antrl |
|
| 16 |
13 15
|
mpbid |
|
| 17 |
|
simpll |
|
| 18 |
|
simplr |
|
| 19 |
|
fveq2 |
|
| 20 |
19
|
con3i |
|
| 21 |
20
|
adantl |
|
| 22 |
21
|
neqned |
|
| 23 |
|
goldbachth |
|
| 24 |
17 18 22 23
|
syl3anc |
|
| 25 |
24
|
ex |
|
| 26 |
|
eqeq12 |
|
| 27 |
26
|
notbid |
|
| 28 |
|
oveq12 |
|
| 29 |
28
|
eqeq1d |
|
| 30 |
27 29
|
imbi12d |
|
| 31 |
30
|
ancoms |
|
| 32 |
25 31
|
syl5ibcom |
|
| 33 |
32
|
com23 |
|
| 34 |
33
|
impcom |
|
| 35 |
34
|
imp |
|
| 36 |
|
prmnn |
|
| 37 |
|
coprmdvds1 |
|
| 38 |
37
|
imp |
|
| 39 |
36 38
|
syl3anr1 |
|
| 40 |
|
eleq1 |
|
| 41 |
|
1nprm |
|
| 42 |
41
|
pm2.21i |
|
| 43 |
40 42
|
biimtrdi |
|
| 44 |
43
|
com12 |
|
| 45 |
44
|
a1d |
|
| 46 |
45
|
3ad2ant1 |
|
| 47 |
46
|
impcom |
|
| 48 |
39 47
|
mpd |
|
| 49 |
48
|
ex |
|
| 50 |
10 16 35 49
|
syl3anc |
|
| 51 |
50
|
exp43 |
|
| 52 |
4 51
|
pm2.61i |
|
| 53 |
52
|
rexlimdva |
|
| 54 |
53
|
com23 |
|
| 55 |
54
|
rexlimiv |
|
| 56 |
55
|
imp |
|
| 57 |
1 2 56
|
syl2anb |
|