Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
|- ( f e. ran FermatNo |-> inf ( { p e. Prime | p || f } , RR , < ) ) = ( f e. ran FermatNo |-> inf ( { p e. Prime | p || f } , RR , < ) ) |
2 |
1
|
prmdvdsfmtnof1 |
|- ( f e. ran FermatNo |-> inf ( { p e. Prime | p || f } , RR , < ) ) : ran FermatNo -1-1-> Prime |
3 |
|
ax-1 |
|- ( Prime e/ Fin -> ( ( f e. ran FermatNo |-> inf ( { p e. Prime | p || f } , RR , < ) ) : ran FermatNo -1-1-> Prime -> Prime e/ Fin ) ) |
4 |
|
nnel |
|- ( -. Prime e/ Fin <-> Prime e. Fin ) |
5 |
|
fmtnoinf |
|- ran FermatNo e/ Fin |
6 |
|
f1fi |
|- ( ( Prime e. Fin /\ ( f e. ran FermatNo |-> inf ( { p e. Prime | p || f } , RR , < ) ) : ran FermatNo -1-1-> Prime ) -> ran FermatNo e. Fin ) |
7 |
|
df-nel |
|- ( ran FermatNo e/ Fin <-> -. ran FermatNo e. Fin ) |
8 |
|
pm2.21 |
|- ( -. ran FermatNo e. Fin -> ( ran FermatNo e. Fin -> Prime e/ Fin ) ) |
9 |
7 8
|
sylbi |
|- ( ran FermatNo e/ Fin -> ( ran FermatNo e. Fin -> Prime e/ Fin ) ) |
10 |
5 6 9
|
mpsyl |
|- ( ( Prime e. Fin /\ ( f e. ran FermatNo |-> inf ( { p e. Prime | p || f } , RR , < ) ) : ran FermatNo -1-1-> Prime ) -> Prime e/ Fin ) |
11 |
10
|
ex |
|- ( Prime e. Fin -> ( ( f e. ran FermatNo |-> inf ( { p e. Prime | p || f } , RR , < ) ) : ran FermatNo -1-1-> Prime -> Prime e/ Fin ) ) |
12 |
4 11
|
sylbi |
|- ( -. Prime e/ Fin -> ( ( f e. ran FermatNo |-> inf ( { p e. Prime | p || f } , RR , < ) ) : ran FermatNo -1-1-> Prime -> Prime e/ Fin ) ) |
13 |
3 12
|
pm2.61i |
|- ( ( f e. ran FermatNo |-> inf ( { p e. Prime | p || f } , RR , < ) ) : ran FermatNo -1-1-> Prime -> Prime e/ Fin ) |
14 |
2 13
|
ax-mp |
|- Prime e/ Fin |