Step |
Hyp |
Ref |
Expression |
1 |
|
oddprmdvds |
|- ( ( K e. NN /\ -. E. n e. NN0 K = ( 2 ^ n ) ) -> E. p e. ( Prime \ { 2 } ) p || K ) |
2 |
1
|
adantlr |
|- ( ( ( K e. NN /\ ( ( 2 ^ K ) + 1 ) e. Prime ) /\ -. E. n e. NN0 K = ( 2 ^ n ) ) -> E. p e. ( Prime \ { 2 } ) p || K ) |
3 |
|
eldifi |
|- ( p e. ( Prime \ { 2 } ) -> p e. Prime ) |
4 |
|
prmnn |
|- ( p e. Prime -> p e. NN ) |
5 |
3 4
|
syl |
|- ( p e. ( Prime \ { 2 } ) -> p e. NN ) |
6 |
|
simpl |
|- ( ( K e. NN /\ ( ( 2 ^ K ) + 1 ) e. Prime ) -> K e. NN ) |
7 |
|
nndivides |
|- ( ( p e. NN /\ K e. NN ) -> ( p || K <-> E. m e. NN ( m x. p ) = K ) ) |
8 |
5 6 7
|
syl2anr |
|- ( ( ( K e. NN /\ ( ( 2 ^ K ) + 1 ) e. Prime ) /\ p e. ( Prime \ { 2 } ) ) -> ( p || K <-> E. m e. NN ( m x. p ) = K ) ) |
9 |
|
2re |
|- 2 e. RR |
10 |
9
|
a1i |
|- ( m e. NN -> 2 e. RR ) |
11 |
|
nnnn0 |
|- ( m e. NN -> m e. NN0 ) |
12 |
|
1le2 |
|- 1 <_ 2 |
13 |
12
|
a1i |
|- ( m e. NN -> 1 <_ 2 ) |
14 |
10 11 13
|
expge1d |
|- ( m e. NN -> 1 <_ ( 2 ^ m ) ) |
15 |
|
1zzd |
|- ( m e. NN -> 1 e. ZZ ) |
16 |
|
2nn |
|- 2 e. NN |
17 |
16
|
a1i |
|- ( m e. NN -> 2 e. NN ) |
18 |
17 11
|
nnexpcld |
|- ( m e. NN -> ( 2 ^ m ) e. NN ) |
19 |
18
|
nnzd |
|- ( m e. NN -> ( 2 ^ m ) e. ZZ ) |
20 |
|
zleltp1 |
|- ( ( 1 e. ZZ /\ ( 2 ^ m ) e. ZZ ) -> ( 1 <_ ( 2 ^ m ) <-> 1 < ( ( 2 ^ m ) + 1 ) ) ) |
21 |
15 19 20
|
syl2anc |
|- ( m e. NN -> ( 1 <_ ( 2 ^ m ) <-> 1 < ( ( 2 ^ m ) + 1 ) ) ) |
22 |
14 21
|
mpbid |
|- ( m e. NN -> 1 < ( ( 2 ^ m ) + 1 ) ) |
23 |
18
|
nncnd |
|- ( m e. NN -> ( 2 ^ m ) e. CC ) |
24 |
|
1cnd |
|- ( m e. NN -> 1 e. CC ) |
25 |
|
subneg |
|- ( ( ( 2 ^ m ) e. CC /\ 1 e. CC ) -> ( ( 2 ^ m ) - -u 1 ) = ( ( 2 ^ m ) + 1 ) ) |
26 |
25
|
breq2d |
|- ( ( ( 2 ^ m ) e. CC /\ 1 e. CC ) -> ( 1 < ( ( 2 ^ m ) - -u 1 ) <-> 1 < ( ( 2 ^ m ) + 1 ) ) ) |
27 |
23 24 26
|
syl2anc |
|- ( m e. NN -> ( 1 < ( ( 2 ^ m ) - -u 1 ) <-> 1 < ( ( 2 ^ m ) + 1 ) ) ) |
28 |
22 27
|
mpbird |
|- ( m e. NN -> 1 < ( ( 2 ^ m ) - -u 1 ) ) |
29 |
28
|
adantl |
|- ( ( p e. ( Prime \ { 2 } ) /\ m e. NN ) -> 1 < ( ( 2 ^ m ) - -u 1 ) ) |
30 |
29
|
ad2antlr |
|- ( ( ( K e. NN /\ ( p e. ( Prime \ { 2 } ) /\ m e. NN ) ) /\ ( m x. p ) = K ) -> 1 < ( ( 2 ^ m ) - -u 1 ) ) |
31 |
18
|
nnred |
|- ( m e. NN -> ( 2 ^ m ) e. RR ) |
32 |
31
|
adantl |
|- ( ( p e. ( Prime \ { 2 } ) /\ m e. NN ) -> ( 2 ^ m ) e. RR ) |
33 |
16
|
a1i |
|- ( ( p e. ( Prime \ { 2 } ) /\ m e. NN ) -> 2 e. NN ) |
34 |
11
|
adantl |
|- ( ( p e. ( Prime \ { 2 } ) /\ m e. NN ) -> m e. NN0 ) |
35 |
5
|
nnnn0d |
|- ( p e. ( Prime \ { 2 } ) -> p e. NN0 ) |
36 |
35
|
adantr |
|- ( ( p e. ( Prime \ { 2 } ) /\ m e. NN ) -> p e. NN0 ) |
37 |
34 36
|
nn0mulcld |
|- ( ( p e. ( Prime \ { 2 } ) /\ m e. NN ) -> ( m x. p ) e. NN0 ) |
38 |
33 37
|
nnexpcld |
|- ( ( p e. ( Prime \ { 2 } ) /\ m e. NN ) -> ( 2 ^ ( m x. p ) ) e. NN ) |
39 |
38
|
nnred |
|- ( ( p e. ( Prime \ { 2 } ) /\ m e. NN ) -> ( 2 ^ ( m x. p ) ) e. RR ) |
40 |
|
1red |
|- ( ( p e. ( Prime \ { 2 } ) /\ m e. NN ) -> 1 e. RR ) |
41 |
9
|
a1i |
|- ( ( p e. ( Prime \ { 2 } ) /\ m e. NN ) -> 2 e. RR ) |
42 |
|
nnz |
|- ( m e. NN -> m e. ZZ ) |
43 |
42
|
adantl |
|- ( ( p e. ( Prime \ { 2 } ) /\ m e. NN ) -> m e. ZZ ) |
44 |
5
|
nnzd |
|- ( p e. ( Prime \ { 2 } ) -> p e. ZZ ) |
45 |
44
|
adantr |
|- ( ( p e. ( Prime \ { 2 } ) /\ m e. NN ) -> p e. ZZ ) |
46 |
43 45
|
zmulcld |
|- ( ( p e. ( Prime \ { 2 } ) /\ m e. NN ) -> ( m x. p ) e. ZZ ) |
47 |
|
1lt2 |
|- 1 < 2 |
48 |
47
|
a1i |
|- ( ( p e. ( Prime \ { 2 } ) /\ m e. NN ) -> 1 < 2 ) |
49 |
|
prmgt1 |
|- ( p e. Prime -> 1 < p ) |
50 |
3 49
|
syl |
|- ( p e. ( Prime \ { 2 } ) -> 1 < p ) |
51 |
50
|
adantr |
|- ( ( p e. ( Prime \ { 2 } ) /\ m e. NN ) -> 1 < p ) |
52 |
|
nnre |
|- ( m e. NN -> m e. RR ) |
53 |
52
|
adantl |
|- ( ( p e. ( Prime \ { 2 } ) /\ m e. NN ) -> m e. RR ) |
54 |
5
|
nnred |
|- ( p e. ( Prime \ { 2 } ) -> p e. RR ) |
55 |
54
|
adantr |
|- ( ( p e. ( Prime \ { 2 } ) /\ m e. NN ) -> p e. RR ) |
56 |
|
nngt0 |
|- ( m e. NN -> 0 < m ) |
57 |
56
|
adantl |
|- ( ( p e. ( Prime \ { 2 } ) /\ m e. NN ) -> 0 < m ) |
58 |
|
ltmulgt11 |
|- ( ( m e. RR /\ p e. RR /\ 0 < m ) -> ( 1 < p <-> m < ( m x. p ) ) ) |
59 |
53 55 57 58
|
syl3anc |
|- ( ( p e. ( Prime \ { 2 } ) /\ m e. NN ) -> ( 1 < p <-> m < ( m x. p ) ) ) |
60 |
51 59
|
mpbid |
|- ( ( p e. ( Prime \ { 2 } ) /\ m e. NN ) -> m < ( m x. p ) ) |
61 |
|
ltexp2a |
|- ( ( ( 2 e. RR /\ m e. ZZ /\ ( m x. p ) e. ZZ ) /\ ( 1 < 2 /\ m < ( m x. p ) ) ) -> ( 2 ^ m ) < ( 2 ^ ( m x. p ) ) ) |
62 |
41 43 46 48 60 61
|
syl32anc |
|- ( ( p e. ( Prime \ { 2 } ) /\ m e. NN ) -> ( 2 ^ m ) < ( 2 ^ ( m x. p ) ) ) |
63 |
32 39 40 62
|
ltadd1dd |
|- ( ( p e. ( Prime \ { 2 } ) /\ m e. NN ) -> ( ( 2 ^ m ) + 1 ) < ( ( 2 ^ ( m x. p ) ) + 1 ) ) |
64 |
63
|
ad2antlr |
|- ( ( ( K e. NN /\ ( p e. ( Prime \ { 2 } ) /\ m e. NN ) ) /\ ( m x. p ) = K ) -> ( ( 2 ^ m ) + 1 ) < ( ( 2 ^ ( m x. p ) ) + 1 ) ) |
65 |
23 24
|
subnegd |
|- ( m e. NN -> ( ( 2 ^ m ) - -u 1 ) = ( ( 2 ^ m ) + 1 ) ) |
66 |
65
|
eqcomd |
|- ( m e. NN -> ( ( 2 ^ m ) + 1 ) = ( ( 2 ^ m ) - -u 1 ) ) |
67 |
66
|
adantl |
|- ( ( p e. ( Prime \ { 2 } ) /\ m e. NN ) -> ( ( 2 ^ m ) + 1 ) = ( ( 2 ^ m ) - -u 1 ) ) |
68 |
67
|
ad2antlr |
|- ( ( ( K e. NN /\ ( p e. ( Prime \ { 2 } ) /\ m e. NN ) ) /\ ( m x. p ) = K ) -> ( ( 2 ^ m ) + 1 ) = ( ( 2 ^ m ) - -u 1 ) ) |
69 |
|
oveq2 |
|- ( ( m x. p ) = K -> ( 2 ^ ( m x. p ) ) = ( 2 ^ K ) ) |
70 |
69
|
oveq1d |
|- ( ( m x. p ) = K -> ( ( 2 ^ ( m x. p ) ) + 1 ) = ( ( 2 ^ K ) + 1 ) ) |
71 |
70
|
adantl |
|- ( ( ( K e. NN /\ ( p e. ( Prime \ { 2 } ) /\ m e. NN ) ) /\ ( m x. p ) = K ) -> ( ( 2 ^ ( m x. p ) ) + 1 ) = ( ( 2 ^ K ) + 1 ) ) |
72 |
64 68 71
|
3brtr3d |
|- ( ( ( K e. NN /\ ( p e. ( Prime \ { 2 } ) /\ m e. NN ) ) /\ ( m x. p ) = K ) -> ( ( 2 ^ m ) - -u 1 ) < ( ( 2 ^ K ) + 1 ) ) |
73 |
|
neg1z |
|- -u 1 e. ZZ |
74 |
73
|
a1i |
|- ( m e. NN -> -u 1 e. ZZ ) |
75 |
19 74
|
zsubcld |
|- ( m e. NN -> ( ( 2 ^ m ) - -u 1 ) e. ZZ ) |
76 |
75
|
adantl |
|- ( ( p e. ( Prime \ { 2 } ) /\ m e. NN ) -> ( ( 2 ^ m ) - -u 1 ) e. ZZ ) |
77 |
|
fzofi |
|- ( 0 ..^ p ) e. Fin |
78 |
77
|
a1i |
|- ( ( p e. ( Prime \ { 2 } ) /\ m e. NN ) -> ( 0 ..^ p ) e. Fin ) |
79 |
19
|
adantl |
|- ( ( p e. ( Prime \ { 2 } ) /\ m e. NN ) -> ( 2 ^ m ) e. ZZ ) |
80 |
|
elfzonn0 |
|- ( k e. ( 0 ..^ p ) -> k e. NN0 ) |
81 |
|
zexpcl |
|- ( ( ( 2 ^ m ) e. ZZ /\ k e. NN0 ) -> ( ( 2 ^ m ) ^ k ) e. ZZ ) |
82 |
79 80 81
|
syl2an |
|- ( ( ( p e. ( Prime \ { 2 } ) /\ m e. NN ) /\ k e. ( 0 ..^ p ) ) -> ( ( 2 ^ m ) ^ k ) e. ZZ ) |
83 |
73
|
a1i |
|- ( ( ( p e. ( Prime \ { 2 } ) /\ m e. NN ) /\ k e. ( 0 ..^ p ) ) -> -u 1 e. ZZ ) |
84 |
|
fzonnsub |
|- ( k e. ( 0 ..^ p ) -> ( p - k ) e. NN ) |
85 |
84
|
adantl |
|- ( ( ( p e. ( Prime \ { 2 } ) /\ m e. NN ) /\ k e. ( 0 ..^ p ) ) -> ( p - k ) e. NN ) |
86 |
|
nnm1nn0 |
|- ( ( p - k ) e. NN -> ( ( p - k ) - 1 ) e. NN0 ) |
87 |
85 86
|
syl |
|- ( ( ( p e. ( Prime \ { 2 } ) /\ m e. NN ) /\ k e. ( 0 ..^ p ) ) -> ( ( p - k ) - 1 ) e. NN0 ) |
88 |
|
zexpcl |
|- ( ( -u 1 e. ZZ /\ ( ( p - k ) - 1 ) e. NN0 ) -> ( -u 1 ^ ( ( p - k ) - 1 ) ) e. ZZ ) |
89 |
83 87 88
|
syl2anc |
|- ( ( ( p e. ( Prime \ { 2 } ) /\ m e. NN ) /\ k e. ( 0 ..^ p ) ) -> ( -u 1 ^ ( ( p - k ) - 1 ) ) e. ZZ ) |
90 |
82 89
|
zmulcld |
|- ( ( ( p e. ( Prime \ { 2 } ) /\ m e. NN ) /\ k e. ( 0 ..^ p ) ) -> ( ( ( 2 ^ m ) ^ k ) x. ( -u 1 ^ ( ( p - k ) - 1 ) ) ) e. ZZ ) |
91 |
78 90
|
fsumzcl |
|- ( ( p e. ( Prime \ { 2 } ) /\ m e. NN ) -> sum_ k e. ( 0 ..^ p ) ( ( ( 2 ^ m ) ^ k ) x. ( -u 1 ^ ( ( p - k ) - 1 ) ) ) e. ZZ ) |
92 |
|
dvdsmul1 |
|- ( ( ( ( 2 ^ m ) - -u 1 ) e. ZZ /\ sum_ k e. ( 0 ..^ p ) ( ( ( 2 ^ m ) ^ k ) x. ( -u 1 ^ ( ( p - k ) - 1 ) ) ) e. ZZ ) -> ( ( 2 ^ m ) - -u 1 ) || ( ( ( 2 ^ m ) - -u 1 ) x. sum_ k e. ( 0 ..^ p ) ( ( ( 2 ^ m ) ^ k ) x. ( -u 1 ^ ( ( p - k ) - 1 ) ) ) ) ) |
93 |
76 91 92
|
syl2anc |
|- ( ( p e. ( Prime \ { 2 } ) /\ m e. NN ) -> ( ( 2 ^ m ) - -u 1 ) || ( ( ( 2 ^ m ) - -u 1 ) x. sum_ k e. ( 0 ..^ p ) ( ( ( 2 ^ m ) ^ k ) x. ( -u 1 ^ ( ( p - k ) - 1 ) ) ) ) ) |
94 |
93
|
ad2antlr |
|- ( ( ( K e. NN /\ ( p e. ( Prime \ { 2 } ) /\ m e. NN ) ) /\ ( m x. p ) = K ) -> ( ( 2 ^ m ) - -u 1 ) || ( ( ( 2 ^ m ) - -u 1 ) x. sum_ k e. ( 0 ..^ p ) ( ( ( 2 ^ m ) ^ k ) x. ( -u 1 ^ ( ( p - k ) - 1 ) ) ) ) ) |
95 |
23
|
adantl |
|- ( ( p e. ( Prime \ { 2 } ) /\ m e. NN ) -> ( 2 ^ m ) e. CC ) |
96 |
|
neg1cn |
|- -u 1 e. CC |
97 |
96
|
a1i |
|- ( ( p e. ( Prime \ { 2 } ) /\ m e. NN ) -> -u 1 e. CC ) |
98 |
|
pwdif |
|- ( ( p e. NN0 /\ ( 2 ^ m ) e. CC /\ -u 1 e. CC ) -> ( ( ( 2 ^ m ) ^ p ) - ( -u 1 ^ p ) ) = ( ( ( 2 ^ m ) - -u 1 ) x. sum_ k e. ( 0 ..^ p ) ( ( ( 2 ^ m ) ^ k ) x. ( -u 1 ^ ( ( p - k ) - 1 ) ) ) ) ) |
99 |
36 95 97 98
|
syl3anc |
|- ( ( p e. ( Prime \ { 2 } ) /\ m e. NN ) -> ( ( ( 2 ^ m ) ^ p ) - ( -u 1 ^ p ) ) = ( ( ( 2 ^ m ) - -u 1 ) x. sum_ k e. ( 0 ..^ p ) ( ( ( 2 ^ m ) ^ k ) x. ( -u 1 ^ ( ( p - k ) - 1 ) ) ) ) ) |
100 |
99
|
breq2d |
|- ( ( p e. ( Prime \ { 2 } ) /\ m e. NN ) -> ( ( ( 2 ^ m ) - -u 1 ) || ( ( ( 2 ^ m ) ^ p ) - ( -u 1 ^ p ) ) <-> ( ( 2 ^ m ) - -u 1 ) || ( ( ( 2 ^ m ) - -u 1 ) x. sum_ k e. ( 0 ..^ p ) ( ( ( 2 ^ m ) ^ k ) x. ( -u 1 ^ ( ( p - k ) - 1 ) ) ) ) ) ) |
101 |
100
|
ad2antlr |
|- ( ( ( K e. NN /\ ( p e. ( Prime \ { 2 } ) /\ m e. NN ) ) /\ ( m x. p ) = K ) -> ( ( ( 2 ^ m ) - -u 1 ) || ( ( ( 2 ^ m ) ^ p ) - ( -u 1 ^ p ) ) <-> ( ( 2 ^ m ) - -u 1 ) || ( ( ( 2 ^ m ) - -u 1 ) x. sum_ k e. ( 0 ..^ p ) ( ( ( 2 ^ m ) ^ k ) x. ( -u 1 ^ ( ( p - k ) - 1 ) ) ) ) ) ) |
102 |
94 101
|
mpbird |
|- ( ( ( K e. NN /\ ( p e. ( Prime \ { 2 } ) /\ m e. NN ) ) /\ ( m x. p ) = K ) -> ( ( 2 ^ m ) - -u 1 ) || ( ( ( 2 ^ m ) ^ p ) - ( -u 1 ^ p ) ) ) |
103 |
|
2cnd |
|- ( K e. NN -> 2 e. CC ) |
104 |
|
nnnn0 |
|- ( K e. NN -> K e. NN0 ) |
105 |
103 104
|
expcld |
|- ( K e. NN -> ( 2 ^ K ) e. CC ) |
106 |
|
1cnd |
|- ( K e. NN -> 1 e. CC ) |
107 |
105 106
|
subnegd |
|- ( K e. NN -> ( ( 2 ^ K ) - -u 1 ) = ( ( 2 ^ K ) + 1 ) ) |
108 |
107
|
eqcomd |
|- ( K e. NN -> ( ( 2 ^ K ) + 1 ) = ( ( 2 ^ K ) - -u 1 ) ) |
109 |
108
|
adantr |
|- ( ( K e. NN /\ ( p e. ( Prime \ { 2 } ) /\ m e. NN ) ) -> ( ( 2 ^ K ) + 1 ) = ( ( 2 ^ K ) - -u 1 ) ) |
110 |
109
|
adantr |
|- ( ( ( K e. NN /\ ( p e. ( Prime \ { 2 } ) /\ m e. NN ) ) /\ ( m x. p ) = K ) -> ( ( 2 ^ K ) + 1 ) = ( ( 2 ^ K ) - -u 1 ) ) |
111 |
|
oveq2 |
|- ( K = ( m x. p ) -> ( 2 ^ K ) = ( 2 ^ ( m x. p ) ) ) |
112 |
111
|
eqcoms |
|- ( ( m x. p ) = K -> ( 2 ^ K ) = ( 2 ^ ( m x. p ) ) ) |
113 |
112
|
adantl |
|- ( ( ( K e. NN /\ ( p e. ( Prime \ { 2 } ) /\ m e. NN ) ) /\ ( m x. p ) = K ) -> ( 2 ^ K ) = ( 2 ^ ( m x. p ) ) ) |
114 |
|
2cnd |
|- ( ( p e. ( Prime \ { 2 } ) /\ m e. NN ) -> 2 e. CC ) |
115 |
114 36 34
|
expmuld |
|- ( ( p e. ( Prime \ { 2 } ) /\ m e. NN ) -> ( 2 ^ ( m x. p ) ) = ( ( 2 ^ m ) ^ p ) ) |
116 |
115
|
ad2antlr |
|- ( ( ( K e. NN /\ ( p e. ( Prime \ { 2 } ) /\ m e. NN ) ) /\ ( m x. p ) = K ) -> ( 2 ^ ( m x. p ) ) = ( ( 2 ^ m ) ^ p ) ) |
117 |
113 116
|
eqtrd |
|- ( ( ( K e. NN /\ ( p e. ( Prime \ { 2 } ) /\ m e. NN ) ) /\ ( m x. p ) = K ) -> ( 2 ^ K ) = ( ( 2 ^ m ) ^ p ) ) |
118 |
|
1exp |
|- ( p e. ZZ -> ( 1 ^ p ) = 1 ) |
119 |
44 118
|
syl |
|- ( p e. ( Prime \ { 2 } ) -> ( 1 ^ p ) = 1 ) |
120 |
119
|
eqcomd |
|- ( p e. ( Prime \ { 2 } ) -> 1 = ( 1 ^ p ) ) |
121 |
120
|
negeqd |
|- ( p e. ( Prime \ { 2 } ) -> -u 1 = -u ( 1 ^ p ) ) |
122 |
|
1cnd |
|- ( p e. ( Prime \ { 2 } ) -> 1 e. CC ) |
123 |
|
oddn2prm |
|- ( p e. ( Prime \ { 2 } ) -> -. 2 || p ) |
124 |
|
oexpneg |
|- ( ( 1 e. CC /\ p e. NN /\ -. 2 || p ) -> ( -u 1 ^ p ) = -u ( 1 ^ p ) ) |
125 |
122 5 123 124
|
syl3anc |
|- ( p e. ( Prime \ { 2 } ) -> ( -u 1 ^ p ) = -u ( 1 ^ p ) ) |
126 |
125
|
eqcomd |
|- ( p e. ( Prime \ { 2 } ) -> -u ( 1 ^ p ) = ( -u 1 ^ p ) ) |
127 |
121 126
|
eqtrd |
|- ( p e. ( Prime \ { 2 } ) -> -u 1 = ( -u 1 ^ p ) ) |
128 |
127
|
adantr |
|- ( ( p e. ( Prime \ { 2 } ) /\ m e. NN ) -> -u 1 = ( -u 1 ^ p ) ) |
129 |
128
|
ad2antlr |
|- ( ( ( K e. NN /\ ( p e. ( Prime \ { 2 } ) /\ m e. NN ) ) /\ ( m x. p ) = K ) -> -u 1 = ( -u 1 ^ p ) ) |
130 |
117 129
|
oveq12d |
|- ( ( ( K e. NN /\ ( p e. ( Prime \ { 2 } ) /\ m e. NN ) ) /\ ( m x. p ) = K ) -> ( ( 2 ^ K ) - -u 1 ) = ( ( ( 2 ^ m ) ^ p ) - ( -u 1 ^ p ) ) ) |
131 |
110 130
|
eqtrd |
|- ( ( ( K e. NN /\ ( p e. ( Prime \ { 2 } ) /\ m e. NN ) ) /\ ( m x. p ) = K ) -> ( ( 2 ^ K ) + 1 ) = ( ( ( 2 ^ m ) ^ p ) - ( -u 1 ^ p ) ) ) |
132 |
131
|
breq2d |
|- ( ( ( K e. NN /\ ( p e. ( Prime \ { 2 } ) /\ m e. NN ) ) /\ ( m x. p ) = K ) -> ( ( ( 2 ^ m ) - -u 1 ) || ( ( 2 ^ K ) + 1 ) <-> ( ( 2 ^ m ) - -u 1 ) || ( ( ( 2 ^ m ) ^ p ) - ( -u 1 ^ p ) ) ) ) |
133 |
102 132
|
mpbird |
|- ( ( ( K e. NN /\ ( p e. ( Prime \ { 2 } ) /\ m e. NN ) ) /\ ( m x. p ) = K ) -> ( ( 2 ^ m ) - -u 1 ) || ( ( 2 ^ K ) + 1 ) ) |
134 |
30 72 133
|
dvdsnprmd |
|- ( ( ( K e. NN /\ ( p e. ( Prime \ { 2 } ) /\ m e. NN ) ) /\ ( m x. p ) = K ) -> -. ( ( 2 ^ K ) + 1 ) e. Prime ) |
135 |
134
|
pm2.21d |
|- ( ( ( K e. NN /\ ( p e. ( Prime \ { 2 } ) /\ m e. NN ) ) /\ ( m x. p ) = K ) -> ( ( ( 2 ^ K ) + 1 ) e. Prime -> E. n e. NN0 K = ( 2 ^ n ) ) ) |
136 |
135
|
ex |
|- ( ( K e. NN /\ ( p e. ( Prime \ { 2 } ) /\ m e. NN ) ) -> ( ( m x. p ) = K -> ( ( ( 2 ^ K ) + 1 ) e. Prime -> E. n e. NN0 K = ( 2 ^ n ) ) ) ) |
137 |
136
|
com23 |
|- ( ( K e. NN /\ ( p e. ( Prime \ { 2 } ) /\ m e. NN ) ) -> ( ( ( 2 ^ K ) + 1 ) e. Prime -> ( ( m x. p ) = K -> E. n e. NN0 K = ( 2 ^ n ) ) ) ) |
138 |
137
|
impancom |
|- ( ( K e. NN /\ ( ( 2 ^ K ) + 1 ) e. Prime ) -> ( ( p e. ( Prime \ { 2 } ) /\ m e. NN ) -> ( ( m x. p ) = K -> E. n e. NN0 K = ( 2 ^ n ) ) ) ) |
139 |
138
|
impl |
|- ( ( ( ( K e. NN /\ ( ( 2 ^ K ) + 1 ) e. Prime ) /\ p e. ( Prime \ { 2 } ) ) /\ m e. NN ) -> ( ( m x. p ) = K -> E. n e. NN0 K = ( 2 ^ n ) ) ) |
140 |
139
|
rexlimdva |
|- ( ( ( K e. NN /\ ( ( 2 ^ K ) + 1 ) e. Prime ) /\ p e. ( Prime \ { 2 } ) ) -> ( E. m e. NN ( m x. p ) = K -> E. n e. NN0 K = ( 2 ^ n ) ) ) |
141 |
8 140
|
sylbid |
|- ( ( ( K e. NN /\ ( ( 2 ^ K ) + 1 ) e. Prime ) /\ p e. ( Prime \ { 2 } ) ) -> ( p || K -> E. n e. NN0 K = ( 2 ^ n ) ) ) |
142 |
141
|
rexlimdva |
|- ( ( K e. NN /\ ( ( 2 ^ K ) + 1 ) e. Prime ) -> ( E. p e. ( Prime \ { 2 } ) p || K -> E. n e. NN0 K = ( 2 ^ n ) ) ) |
143 |
142
|
adantr |
|- ( ( ( K e. NN /\ ( ( 2 ^ K ) + 1 ) e. Prime ) /\ -. E. n e. NN0 K = ( 2 ^ n ) ) -> ( E. p e. ( Prime \ { 2 } ) p || K -> E. n e. NN0 K = ( 2 ^ n ) ) ) |
144 |
2 143
|
mpd |
|- ( ( ( K e. NN /\ ( ( 2 ^ K ) + 1 ) e. Prime ) /\ -. E. n e. NN0 K = ( 2 ^ n ) ) -> E. n e. NN0 K = ( 2 ^ n ) ) |
145 |
144
|
pm2.18da |
|- ( ( K e. NN /\ ( ( 2 ^ K ) + 1 ) e. Prime ) -> E. n e. NN0 K = ( 2 ^ n ) ) |