| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oddprmdvds |  |-  ( ( K e. NN /\ -. E. n e. NN0 K = ( 2 ^ n ) ) -> E. p e. ( Prime \ { 2 } ) p || K ) | 
						
							| 2 | 1 | adantlr |  |-  ( ( ( K e. NN /\ ( ( 2 ^ K ) + 1 ) e. Prime ) /\ -. E. n e. NN0 K = ( 2 ^ n ) ) -> E. p e. ( Prime \ { 2 } ) p || K ) | 
						
							| 3 |  | eldifi |  |-  ( p e. ( Prime \ { 2 } ) -> p e. Prime ) | 
						
							| 4 |  | prmnn |  |-  ( p e. Prime -> p e. NN ) | 
						
							| 5 | 3 4 | syl |  |-  ( p e. ( Prime \ { 2 } ) -> p e. NN ) | 
						
							| 6 |  | simpl |  |-  ( ( K e. NN /\ ( ( 2 ^ K ) + 1 ) e. Prime ) -> K e. NN ) | 
						
							| 7 |  | nndivides |  |-  ( ( p e. NN /\ K e. NN ) -> ( p || K <-> E. m e. NN ( m x. p ) = K ) ) | 
						
							| 8 | 5 6 7 | syl2anr |  |-  ( ( ( K e. NN /\ ( ( 2 ^ K ) + 1 ) e. Prime ) /\ p e. ( Prime \ { 2 } ) ) -> ( p || K <-> E. m e. NN ( m x. p ) = K ) ) | 
						
							| 9 |  | 2re |  |-  2 e. RR | 
						
							| 10 | 9 | a1i |  |-  ( m e. NN -> 2 e. RR ) | 
						
							| 11 |  | nnnn0 |  |-  ( m e. NN -> m e. NN0 ) | 
						
							| 12 |  | 1le2 |  |-  1 <_ 2 | 
						
							| 13 | 12 | a1i |  |-  ( m e. NN -> 1 <_ 2 ) | 
						
							| 14 | 10 11 13 | expge1d |  |-  ( m e. NN -> 1 <_ ( 2 ^ m ) ) | 
						
							| 15 |  | 1zzd |  |-  ( m e. NN -> 1 e. ZZ ) | 
						
							| 16 |  | 2nn |  |-  2 e. NN | 
						
							| 17 | 16 | a1i |  |-  ( m e. NN -> 2 e. NN ) | 
						
							| 18 | 17 11 | nnexpcld |  |-  ( m e. NN -> ( 2 ^ m ) e. NN ) | 
						
							| 19 | 18 | nnzd |  |-  ( m e. NN -> ( 2 ^ m ) e. ZZ ) | 
						
							| 20 |  | zleltp1 |  |-  ( ( 1 e. ZZ /\ ( 2 ^ m ) e. ZZ ) -> ( 1 <_ ( 2 ^ m ) <-> 1 < ( ( 2 ^ m ) + 1 ) ) ) | 
						
							| 21 | 15 19 20 | syl2anc |  |-  ( m e. NN -> ( 1 <_ ( 2 ^ m ) <-> 1 < ( ( 2 ^ m ) + 1 ) ) ) | 
						
							| 22 | 14 21 | mpbid |  |-  ( m e. NN -> 1 < ( ( 2 ^ m ) + 1 ) ) | 
						
							| 23 | 18 | nncnd |  |-  ( m e. NN -> ( 2 ^ m ) e. CC ) | 
						
							| 24 |  | 1cnd |  |-  ( m e. NN -> 1 e. CC ) | 
						
							| 25 |  | subneg |  |-  ( ( ( 2 ^ m ) e. CC /\ 1 e. CC ) -> ( ( 2 ^ m ) - -u 1 ) = ( ( 2 ^ m ) + 1 ) ) | 
						
							| 26 | 25 | breq2d |  |-  ( ( ( 2 ^ m ) e. CC /\ 1 e. CC ) -> ( 1 < ( ( 2 ^ m ) - -u 1 ) <-> 1 < ( ( 2 ^ m ) + 1 ) ) ) | 
						
							| 27 | 23 24 26 | syl2anc |  |-  ( m e. NN -> ( 1 < ( ( 2 ^ m ) - -u 1 ) <-> 1 < ( ( 2 ^ m ) + 1 ) ) ) | 
						
							| 28 | 22 27 | mpbird |  |-  ( m e. NN -> 1 < ( ( 2 ^ m ) - -u 1 ) ) | 
						
							| 29 | 28 | adantl |  |-  ( ( p e. ( Prime \ { 2 } ) /\ m e. NN ) -> 1 < ( ( 2 ^ m ) - -u 1 ) ) | 
						
							| 30 | 29 | ad2antlr |  |-  ( ( ( K e. NN /\ ( p e. ( Prime \ { 2 } ) /\ m e. NN ) ) /\ ( m x. p ) = K ) -> 1 < ( ( 2 ^ m ) - -u 1 ) ) | 
						
							| 31 | 18 | nnred |  |-  ( m e. NN -> ( 2 ^ m ) e. RR ) | 
						
							| 32 | 31 | adantl |  |-  ( ( p e. ( Prime \ { 2 } ) /\ m e. NN ) -> ( 2 ^ m ) e. RR ) | 
						
							| 33 | 16 | a1i |  |-  ( ( p e. ( Prime \ { 2 } ) /\ m e. NN ) -> 2 e. NN ) | 
						
							| 34 | 11 | adantl |  |-  ( ( p e. ( Prime \ { 2 } ) /\ m e. NN ) -> m e. NN0 ) | 
						
							| 35 | 5 | nnnn0d |  |-  ( p e. ( Prime \ { 2 } ) -> p e. NN0 ) | 
						
							| 36 | 35 | adantr |  |-  ( ( p e. ( Prime \ { 2 } ) /\ m e. NN ) -> p e. NN0 ) | 
						
							| 37 | 34 36 | nn0mulcld |  |-  ( ( p e. ( Prime \ { 2 } ) /\ m e. NN ) -> ( m x. p ) e. NN0 ) | 
						
							| 38 | 33 37 | nnexpcld |  |-  ( ( p e. ( Prime \ { 2 } ) /\ m e. NN ) -> ( 2 ^ ( m x. p ) ) e. NN ) | 
						
							| 39 | 38 | nnred |  |-  ( ( p e. ( Prime \ { 2 } ) /\ m e. NN ) -> ( 2 ^ ( m x. p ) ) e. RR ) | 
						
							| 40 |  | 1red |  |-  ( ( p e. ( Prime \ { 2 } ) /\ m e. NN ) -> 1 e. RR ) | 
						
							| 41 | 9 | a1i |  |-  ( ( p e. ( Prime \ { 2 } ) /\ m e. NN ) -> 2 e. RR ) | 
						
							| 42 |  | nnz |  |-  ( m e. NN -> m e. ZZ ) | 
						
							| 43 | 42 | adantl |  |-  ( ( p e. ( Prime \ { 2 } ) /\ m e. NN ) -> m e. ZZ ) | 
						
							| 44 | 5 | nnzd |  |-  ( p e. ( Prime \ { 2 } ) -> p e. ZZ ) | 
						
							| 45 | 44 | adantr |  |-  ( ( p e. ( Prime \ { 2 } ) /\ m e. NN ) -> p e. ZZ ) | 
						
							| 46 | 43 45 | zmulcld |  |-  ( ( p e. ( Prime \ { 2 } ) /\ m e. NN ) -> ( m x. p ) e. ZZ ) | 
						
							| 47 |  | 1lt2 |  |-  1 < 2 | 
						
							| 48 | 47 | a1i |  |-  ( ( p e. ( Prime \ { 2 } ) /\ m e. NN ) -> 1 < 2 ) | 
						
							| 49 |  | prmgt1 |  |-  ( p e. Prime -> 1 < p ) | 
						
							| 50 | 3 49 | syl |  |-  ( p e. ( Prime \ { 2 } ) -> 1 < p ) | 
						
							| 51 | 50 | adantr |  |-  ( ( p e. ( Prime \ { 2 } ) /\ m e. NN ) -> 1 < p ) | 
						
							| 52 |  | nnre |  |-  ( m e. NN -> m e. RR ) | 
						
							| 53 | 52 | adantl |  |-  ( ( p e. ( Prime \ { 2 } ) /\ m e. NN ) -> m e. RR ) | 
						
							| 54 | 5 | nnred |  |-  ( p e. ( Prime \ { 2 } ) -> p e. RR ) | 
						
							| 55 | 54 | adantr |  |-  ( ( p e. ( Prime \ { 2 } ) /\ m e. NN ) -> p e. RR ) | 
						
							| 56 |  | nngt0 |  |-  ( m e. NN -> 0 < m ) | 
						
							| 57 | 56 | adantl |  |-  ( ( p e. ( Prime \ { 2 } ) /\ m e. NN ) -> 0 < m ) | 
						
							| 58 |  | ltmulgt11 |  |-  ( ( m e. RR /\ p e. RR /\ 0 < m ) -> ( 1 < p <-> m < ( m x. p ) ) ) | 
						
							| 59 | 53 55 57 58 | syl3anc |  |-  ( ( p e. ( Prime \ { 2 } ) /\ m e. NN ) -> ( 1 < p <-> m < ( m x. p ) ) ) | 
						
							| 60 | 51 59 | mpbid |  |-  ( ( p e. ( Prime \ { 2 } ) /\ m e. NN ) -> m < ( m x. p ) ) | 
						
							| 61 |  | ltexp2a |  |-  ( ( ( 2 e. RR /\ m e. ZZ /\ ( m x. p ) e. ZZ ) /\ ( 1 < 2 /\ m < ( m x. p ) ) ) -> ( 2 ^ m ) < ( 2 ^ ( m x. p ) ) ) | 
						
							| 62 | 41 43 46 48 60 61 | syl32anc |  |-  ( ( p e. ( Prime \ { 2 } ) /\ m e. NN ) -> ( 2 ^ m ) < ( 2 ^ ( m x. p ) ) ) | 
						
							| 63 | 32 39 40 62 | ltadd1dd |  |-  ( ( p e. ( Prime \ { 2 } ) /\ m e. NN ) -> ( ( 2 ^ m ) + 1 ) < ( ( 2 ^ ( m x. p ) ) + 1 ) ) | 
						
							| 64 | 63 | ad2antlr |  |-  ( ( ( K e. NN /\ ( p e. ( Prime \ { 2 } ) /\ m e. NN ) ) /\ ( m x. p ) = K ) -> ( ( 2 ^ m ) + 1 ) < ( ( 2 ^ ( m x. p ) ) + 1 ) ) | 
						
							| 65 | 23 24 | subnegd |  |-  ( m e. NN -> ( ( 2 ^ m ) - -u 1 ) = ( ( 2 ^ m ) + 1 ) ) | 
						
							| 66 | 65 | eqcomd |  |-  ( m e. NN -> ( ( 2 ^ m ) + 1 ) = ( ( 2 ^ m ) - -u 1 ) ) | 
						
							| 67 | 66 | adantl |  |-  ( ( p e. ( Prime \ { 2 } ) /\ m e. NN ) -> ( ( 2 ^ m ) + 1 ) = ( ( 2 ^ m ) - -u 1 ) ) | 
						
							| 68 | 67 | ad2antlr |  |-  ( ( ( K e. NN /\ ( p e. ( Prime \ { 2 } ) /\ m e. NN ) ) /\ ( m x. p ) = K ) -> ( ( 2 ^ m ) + 1 ) = ( ( 2 ^ m ) - -u 1 ) ) | 
						
							| 69 |  | oveq2 |  |-  ( ( m x. p ) = K -> ( 2 ^ ( m x. p ) ) = ( 2 ^ K ) ) | 
						
							| 70 | 69 | oveq1d |  |-  ( ( m x. p ) = K -> ( ( 2 ^ ( m x. p ) ) + 1 ) = ( ( 2 ^ K ) + 1 ) ) | 
						
							| 71 | 70 | adantl |  |-  ( ( ( K e. NN /\ ( p e. ( Prime \ { 2 } ) /\ m e. NN ) ) /\ ( m x. p ) = K ) -> ( ( 2 ^ ( m x. p ) ) + 1 ) = ( ( 2 ^ K ) + 1 ) ) | 
						
							| 72 | 64 68 71 | 3brtr3d |  |-  ( ( ( K e. NN /\ ( p e. ( Prime \ { 2 } ) /\ m e. NN ) ) /\ ( m x. p ) = K ) -> ( ( 2 ^ m ) - -u 1 ) < ( ( 2 ^ K ) + 1 ) ) | 
						
							| 73 |  | neg1z |  |-  -u 1 e. ZZ | 
						
							| 74 | 73 | a1i |  |-  ( m e. NN -> -u 1 e. ZZ ) | 
						
							| 75 | 19 74 | zsubcld |  |-  ( m e. NN -> ( ( 2 ^ m ) - -u 1 ) e. ZZ ) | 
						
							| 76 | 75 | adantl |  |-  ( ( p e. ( Prime \ { 2 } ) /\ m e. NN ) -> ( ( 2 ^ m ) - -u 1 ) e. ZZ ) | 
						
							| 77 |  | fzofi |  |-  ( 0 ..^ p ) e. Fin | 
						
							| 78 | 77 | a1i |  |-  ( ( p e. ( Prime \ { 2 } ) /\ m e. NN ) -> ( 0 ..^ p ) e. Fin ) | 
						
							| 79 | 19 | adantl |  |-  ( ( p e. ( Prime \ { 2 } ) /\ m e. NN ) -> ( 2 ^ m ) e. ZZ ) | 
						
							| 80 |  | elfzonn0 |  |-  ( k e. ( 0 ..^ p ) -> k e. NN0 ) | 
						
							| 81 |  | zexpcl |  |-  ( ( ( 2 ^ m ) e. ZZ /\ k e. NN0 ) -> ( ( 2 ^ m ) ^ k ) e. ZZ ) | 
						
							| 82 | 79 80 81 | syl2an |  |-  ( ( ( p e. ( Prime \ { 2 } ) /\ m e. NN ) /\ k e. ( 0 ..^ p ) ) -> ( ( 2 ^ m ) ^ k ) e. ZZ ) | 
						
							| 83 | 73 | a1i |  |-  ( ( ( p e. ( Prime \ { 2 } ) /\ m e. NN ) /\ k e. ( 0 ..^ p ) ) -> -u 1 e. ZZ ) | 
						
							| 84 |  | fzonnsub |  |-  ( k e. ( 0 ..^ p ) -> ( p - k ) e. NN ) | 
						
							| 85 | 84 | adantl |  |-  ( ( ( p e. ( Prime \ { 2 } ) /\ m e. NN ) /\ k e. ( 0 ..^ p ) ) -> ( p - k ) e. NN ) | 
						
							| 86 |  | nnm1nn0 |  |-  ( ( p - k ) e. NN -> ( ( p - k ) - 1 ) e. NN0 ) | 
						
							| 87 | 85 86 | syl |  |-  ( ( ( p e. ( Prime \ { 2 } ) /\ m e. NN ) /\ k e. ( 0 ..^ p ) ) -> ( ( p - k ) - 1 ) e. NN0 ) | 
						
							| 88 |  | zexpcl |  |-  ( ( -u 1 e. ZZ /\ ( ( p - k ) - 1 ) e. NN0 ) -> ( -u 1 ^ ( ( p - k ) - 1 ) ) e. ZZ ) | 
						
							| 89 | 83 87 88 | syl2anc |  |-  ( ( ( p e. ( Prime \ { 2 } ) /\ m e. NN ) /\ k e. ( 0 ..^ p ) ) -> ( -u 1 ^ ( ( p - k ) - 1 ) ) e. ZZ ) | 
						
							| 90 | 82 89 | zmulcld |  |-  ( ( ( p e. ( Prime \ { 2 } ) /\ m e. NN ) /\ k e. ( 0 ..^ p ) ) -> ( ( ( 2 ^ m ) ^ k ) x. ( -u 1 ^ ( ( p - k ) - 1 ) ) ) e. ZZ ) | 
						
							| 91 | 78 90 | fsumzcl |  |-  ( ( p e. ( Prime \ { 2 } ) /\ m e. NN ) -> sum_ k e. ( 0 ..^ p ) ( ( ( 2 ^ m ) ^ k ) x. ( -u 1 ^ ( ( p - k ) - 1 ) ) ) e. ZZ ) | 
						
							| 92 |  | dvdsmul1 |  |-  ( ( ( ( 2 ^ m ) - -u 1 ) e. ZZ /\ sum_ k e. ( 0 ..^ p ) ( ( ( 2 ^ m ) ^ k ) x. ( -u 1 ^ ( ( p - k ) - 1 ) ) ) e. ZZ ) -> ( ( 2 ^ m ) - -u 1 ) || ( ( ( 2 ^ m ) - -u 1 ) x. sum_ k e. ( 0 ..^ p ) ( ( ( 2 ^ m ) ^ k ) x. ( -u 1 ^ ( ( p - k ) - 1 ) ) ) ) ) | 
						
							| 93 | 76 91 92 | syl2anc |  |-  ( ( p e. ( Prime \ { 2 } ) /\ m e. NN ) -> ( ( 2 ^ m ) - -u 1 ) || ( ( ( 2 ^ m ) - -u 1 ) x. sum_ k e. ( 0 ..^ p ) ( ( ( 2 ^ m ) ^ k ) x. ( -u 1 ^ ( ( p - k ) - 1 ) ) ) ) ) | 
						
							| 94 | 93 | ad2antlr |  |-  ( ( ( K e. NN /\ ( p e. ( Prime \ { 2 } ) /\ m e. NN ) ) /\ ( m x. p ) = K ) -> ( ( 2 ^ m ) - -u 1 ) || ( ( ( 2 ^ m ) - -u 1 ) x. sum_ k e. ( 0 ..^ p ) ( ( ( 2 ^ m ) ^ k ) x. ( -u 1 ^ ( ( p - k ) - 1 ) ) ) ) ) | 
						
							| 95 | 23 | adantl |  |-  ( ( p e. ( Prime \ { 2 } ) /\ m e. NN ) -> ( 2 ^ m ) e. CC ) | 
						
							| 96 |  | neg1cn |  |-  -u 1 e. CC | 
						
							| 97 | 96 | a1i |  |-  ( ( p e. ( Prime \ { 2 } ) /\ m e. NN ) -> -u 1 e. CC ) | 
						
							| 98 |  | pwdif |  |-  ( ( p e. NN0 /\ ( 2 ^ m ) e. CC /\ -u 1 e. CC ) -> ( ( ( 2 ^ m ) ^ p ) - ( -u 1 ^ p ) ) = ( ( ( 2 ^ m ) - -u 1 ) x. sum_ k e. ( 0 ..^ p ) ( ( ( 2 ^ m ) ^ k ) x. ( -u 1 ^ ( ( p - k ) - 1 ) ) ) ) ) | 
						
							| 99 | 36 95 97 98 | syl3anc |  |-  ( ( p e. ( Prime \ { 2 } ) /\ m e. NN ) -> ( ( ( 2 ^ m ) ^ p ) - ( -u 1 ^ p ) ) = ( ( ( 2 ^ m ) - -u 1 ) x. sum_ k e. ( 0 ..^ p ) ( ( ( 2 ^ m ) ^ k ) x. ( -u 1 ^ ( ( p - k ) - 1 ) ) ) ) ) | 
						
							| 100 | 99 | breq2d |  |-  ( ( p e. ( Prime \ { 2 } ) /\ m e. NN ) -> ( ( ( 2 ^ m ) - -u 1 ) || ( ( ( 2 ^ m ) ^ p ) - ( -u 1 ^ p ) ) <-> ( ( 2 ^ m ) - -u 1 ) || ( ( ( 2 ^ m ) - -u 1 ) x. sum_ k e. ( 0 ..^ p ) ( ( ( 2 ^ m ) ^ k ) x. ( -u 1 ^ ( ( p - k ) - 1 ) ) ) ) ) ) | 
						
							| 101 | 100 | ad2antlr |  |-  ( ( ( K e. NN /\ ( p e. ( Prime \ { 2 } ) /\ m e. NN ) ) /\ ( m x. p ) = K ) -> ( ( ( 2 ^ m ) - -u 1 ) || ( ( ( 2 ^ m ) ^ p ) - ( -u 1 ^ p ) ) <-> ( ( 2 ^ m ) - -u 1 ) || ( ( ( 2 ^ m ) - -u 1 ) x. sum_ k e. ( 0 ..^ p ) ( ( ( 2 ^ m ) ^ k ) x. ( -u 1 ^ ( ( p - k ) - 1 ) ) ) ) ) ) | 
						
							| 102 | 94 101 | mpbird |  |-  ( ( ( K e. NN /\ ( p e. ( Prime \ { 2 } ) /\ m e. NN ) ) /\ ( m x. p ) = K ) -> ( ( 2 ^ m ) - -u 1 ) || ( ( ( 2 ^ m ) ^ p ) - ( -u 1 ^ p ) ) ) | 
						
							| 103 |  | 2cnd |  |-  ( K e. NN -> 2 e. CC ) | 
						
							| 104 |  | nnnn0 |  |-  ( K e. NN -> K e. NN0 ) | 
						
							| 105 | 103 104 | expcld |  |-  ( K e. NN -> ( 2 ^ K ) e. CC ) | 
						
							| 106 |  | 1cnd |  |-  ( K e. NN -> 1 e. CC ) | 
						
							| 107 | 105 106 | subnegd |  |-  ( K e. NN -> ( ( 2 ^ K ) - -u 1 ) = ( ( 2 ^ K ) + 1 ) ) | 
						
							| 108 | 107 | eqcomd |  |-  ( K e. NN -> ( ( 2 ^ K ) + 1 ) = ( ( 2 ^ K ) - -u 1 ) ) | 
						
							| 109 | 108 | adantr |  |-  ( ( K e. NN /\ ( p e. ( Prime \ { 2 } ) /\ m e. NN ) ) -> ( ( 2 ^ K ) + 1 ) = ( ( 2 ^ K ) - -u 1 ) ) | 
						
							| 110 | 109 | adantr |  |-  ( ( ( K e. NN /\ ( p e. ( Prime \ { 2 } ) /\ m e. NN ) ) /\ ( m x. p ) = K ) -> ( ( 2 ^ K ) + 1 ) = ( ( 2 ^ K ) - -u 1 ) ) | 
						
							| 111 |  | oveq2 |  |-  ( K = ( m x. p ) -> ( 2 ^ K ) = ( 2 ^ ( m x. p ) ) ) | 
						
							| 112 | 111 | eqcoms |  |-  ( ( m x. p ) = K -> ( 2 ^ K ) = ( 2 ^ ( m x. p ) ) ) | 
						
							| 113 | 112 | adantl |  |-  ( ( ( K e. NN /\ ( p e. ( Prime \ { 2 } ) /\ m e. NN ) ) /\ ( m x. p ) = K ) -> ( 2 ^ K ) = ( 2 ^ ( m x. p ) ) ) | 
						
							| 114 |  | 2cnd |  |-  ( ( p e. ( Prime \ { 2 } ) /\ m e. NN ) -> 2 e. CC ) | 
						
							| 115 | 114 36 34 | expmuld |  |-  ( ( p e. ( Prime \ { 2 } ) /\ m e. NN ) -> ( 2 ^ ( m x. p ) ) = ( ( 2 ^ m ) ^ p ) ) | 
						
							| 116 | 115 | ad2antlr |  |-  ( ( ( K e. NN /\ ( p e. ( Prime \ { 2 } ) /\ m e. NN ) ) /\ ( m x. p ) = K ) -> ( 2 ^ ( m x. p ) ) = ( ( 2 ^ m ) ^ p ) ) | 
						
							| 117 | 113 116 | eqtrd |  |-  ( ( ( K e. NN /\ ( p e. ( Prime \ { 2 } ) /\ m e. NN ) ) /\ ( m x. p ) = K ) -> ( 2 ^ K ) = ( ( 2 ^ m ) ^ p ) ) | 
						
							| 118 |  | 1exp |  |-  ( p e. ZZ -> ( 1 ^ p ) = 1 ) | 
						
							| 119 | 44 118 | syl |  |-  ( p e. ( Prime \ { 2 } ) -> ( 1 ^ p ) = 1 ) | 
						
							| 120 | 119 | eqcomd |  |-  ( p e. ( Prime \ { 2 } ) -> 1 = ( 1 ^ p ) ) | 
						
							| 121 | 120 | negeqd |  |-  ( p e. ( Prime \ { 2 } ) -> -u 1 = -u ( 1 ^ p ) ) | 
						
							| 122 |  | 1cnd |  |-  ( p e. ( Prime \ { 2 } ) -> 1 e. CC ) | 
						
							| 123 |  | oddn2prm |  |-  ( p e. ( Prime \ { 2 } ) -> -. 2 || p ) | 
						
							| 124 |  | oexpneg |  |-  ( ( 1 e. CC /\ p e. NN /\ -. 2 || p ) -> ( -u 1 ^ p ) = -u ( 1 ^ p ) ) | 
						
							| 125 | 122 5 123 124 | syl3anc |  |-  ( p e. ( Prime \ { 2 } ) -> ( -u 1 ^ p ) = -u ( 1 ^ p ) ) | 
						
							| 126 | 125 | eqcomd |  |-  ( p e. ( Prime \ { 2 } ) -> -u ( 1 ^ p ) = ( -u 1 ^ p ) ) | 
						
							| 127 | 121 126 | eqtrd |  |-  ( p e. ( Prime \ { 2 } ) -> -u 1 = ( -u 1 ^ p ) ) | 
						
							| 128 | 127 | adantr |  |-  ( ( p e. ( Prime \ { 2 } ) /\ m e. NN ) -> -u 1 = ( -u 1 ^ p ) ) | 
						
							| 129 | 128 | ad2antlr |  |-  ( ( ( K e. NN /\ ( p e. ( Prime \ { 2 } ) /\ m e. NN ) ) /\ ( m x. p ) = K ) -> -u 1 = ( -u 1 ^ p ) ) | 
						
							| 130 | 117 129 | oveq12d |  |-  ( ( ( K e. NN /\ ( p e. ( Prime \ { 2 } ) /\ m e. NN ) ) /\ ( m x. p ) = K ) -> ( ( 2 ^ K ) - -u 1 ) = ( ( ( 2 ^ m ) ^ p ) - ( -u 1 ^ p ) ) ) | 
						
							| 131 | 110 130 | eqtrd |  |-  ( ( ( K e. NN /\ ( p e. ( Prime \ { 2 } ) /\ m e. NN ) ) /\ ( m x. p ) = K ) -> ( ( 2 ^ K ) + 1 ) = ( ( ( 2 ^ m ) ^ p ) - ( -u 1 ^ p ) ) ) | 
						
							| 132 | 131 | breq2d |  |-  ( ( ( K e. NN /\ ( p e. ( Prime \ { 2 } ) /\ m e. NN ) ) /\ ( m x. p ) = K ) -> ( ( ( 2 ^ m ) - -u 1 ) || ( ( 2 ^ K ) + 1 ) <-> ( ( 2 ^ m ) - -u 1 ) || ( ( ( 2 ^ m ) ^ p ) - ( -u 1 ^ p ) ) ) ) | 
						
							| 133 | 102 132 | mpbird |  |-  ( ( ( K e. NN /\ ( p e. ( Prime \ { 2 } ) /\ m e. NN ) ) /\ ( m x. p ) = K ) -> ( ( 2 ^ m ) - -u 1 ) || ( ( 2 ^ K ) + 1 ) ) | 
						
							| 134 | 30 72 133 | dvdsnprmd |  |-  ( ( ( K e. NN /\ ( p e. ( Prime \ { 2 } ) /\ m e. NN ) ) /\ ( m x. p ) = K ) -> -. ( ( 2 ^ K ) + 1 ) e. Prime ) | 
						
							| 135 | 134 | pm2.21d |  |-  ( ( ( K e. NN /\ ( p e. ( Prime \ { 2 } ) /\ m e. NN ) ) /\ ( m x. p ) = K ) -> ( ( ( 2 ^ K ) + 1 ) e. Prime -> E. n e. NN0 K = ( 2 ^ n ) ) ) | 
						
							| 136 | 135 | ex |  |-  ( ( K e. NN /\ ( p e. ( Prime \ { 2 } ) /\ m e. NN ) ) -> ( ( m x. p ) = K -> ( ( ( 2 ^ K ) + 1 ) e. Prime -> E. n e. NN0 K = ( 2 ^ n ) ) ) ) | 
						
							| 137 | 136 | com23 |  |-  ( ( K e. NN /\ ( p e. ( Prime \ { 2 } ) /\ m e. NN ) ) -> ( ( ( 2 ^ K ) + 1 ) e. Prime -> ( ( m x. p ) = K -> E. n e. NN0 K = ( 2 ^ n ) ) ) ) | 
						
							| 138 | 137 | impancom |  |-  ( ( K e. NN /\ ( ( 2 ^ K ) + 1 ) e. Prime ) -> ( ( p e. ( Prime \ { 2 } ) /\ m e. NN ) -> ( ( m x. p ) = K -> E. n e. NN0 K = ( 2 ^ n ) ) ) ) | 
						
							| 139 | 138 | impl |  |-  ( ( ( ( K e. NN /\ ( ( 2 ^ K ) + 1 ) e. Prime ) /\ p e. ( Prime \ { 2 } ) ) /\ m e. NN ) -> ( ( m x. p ) = K -> E. n e. NN0 K = ( 2 ^ n ) ) ) | 
						
							| 140 | 139 | rexlimdva |  |-  ( ( ( K e. NN /\ ( ( 2 ^ K ) + 1 ) e. Prime ) /\ p e. ( Prime \ { 2 } ) ) -> ( E. m e. NN ( m x. p ) = K -> E. n e. NN0 K = ( 2 ^ n ) ) ) | 
						
							| 141 | 8 140 | sylbid |  |-  ( ( ( K e. NN /\ ( ( 2 ^ K ) + 1 ) e. Prime ) /\ p e. ( Prime \ { 2 } ) ) -> ( p || K -> E. n e. NN0 K = ( 2 ^ n ) ) ) | 
						
							| 142 | 141 | rexlimdva |  |-  ( ( K e. NN /\ ( ( 2 ^ K ) + 1 ) e. Prime ) -> ( E. p e. ( Prime \ { 2 } ) p || K -> E. n e. NN0 K = ( 2 ^ n ) ) ) | 
						
							| 143 | 142 | adantr |  |-  ( ( ( K e. NN /\ ( ( 2 ^ K ) + 1 ) e. Prime ) /\ -. E. n e. NN0 K = ( 2 ^ n ) ) -> ( E. p e. ( Prime \ { 2 } ) p || K -> E. n e. NN0 K = ( 2 ^ n ) ) ) | 
						
							| 144 | 2 143 | mpd |  |-  ( ( ( K e. NN /\ ( ( 2 ^ K ) + 1 ) e. Prime ) /\ -. E. n e. NN0 K = ( 2 ^ n ) ) -> E. n e. NN0 K = ( 2 ^ n ) ) | 
						
							| 145 | 144 | pm2.18da |  |-  ( ( K e. NN /\ ( ( 2 ^ K ) + 1 ) e. Prime ) -> E. n e. NN0 K = ( 2 ^ n ) ) |