Metamath Proof Explorer


Theorem fzonnsub

Description: If K < N then N - K is a positive integer. (Contributed by Mario Carneiro, 29-Sep-2015) (Revised by Mario Carneiro, 1-Jan-2017)

Ref Expression
Assertion fzonnsub
|- ( K e. ( M ..^ N ) -> ( N - K ) e. NN )

Proof

Step Hyp Ref Expression
1 elfzolt2
 |-  ( K e. ( M ..^ N ) -> K < N )
2 elfzoelz
 |-  ( K e. ( M ..^ N ) -> K e. ZZ )
3 elfzoel2
 |-  ( K e. ( M ..^ N ) -> N e. ZZ )
4 znnsub
 |-  ( ( K e. ZZ /\ N e. ZZ ) -> ( K < N <-> ( N - K ) e. NN ) )
5 2 3 4 syl2anc
 |-  ( K e. ( M ..^ N ) -> ( K < N <-> ( N - K ) e. NN ) )
6 1 5 mpbid
 |-  ( K e. ( M ..^ N ) -> ( N - K ) e. NN )