Step |
Hyp |
Ref |
Expression |
1 |
|
oddprmdvds |
⊢ ( ( 𝐾 ∈ ℕ ∧ ¬ ∃ 𝑛 ∈ ℕ0 𝐾 = ( 2 ↑ 𝑛 ) ) → ∃ 𝑝 ∈ ( ℙ ∖ { 2 } ) 𝑝 ∥ 𝐾 ) |
2 |
1
|
adantlr |
⊢ ( ( ( 𝐾 ∈ ℕ ∧ ( ( 2 ↑ 𝐾 ) + 1 ) ∈ ℙ ) ∧ ¬ ∃ 𝑛 ∈ ℕ0 𝐾 = ( 2 ↑ 𝑛 ) ) → ∃ 𝑝 ∈ ( ℙ ∖ { 2 } ) 𝑝 ∥ 𝐾 ) |
3 |
|
eldifi |
⊢ ( 𝑝 ∈ ( ℙ ∖ { 2 } ) → 𝑝 ∈ ℙ ) |
4 |
|
prmnn |
⊢ ( 𝑝 ∈ ℙ → 𝑝 ∈ ℕ ) |
5 |
3 4
|
syl |
⊢ ( 𝑝 ∈ ( ℙ ∖ { 2 } ) → 𝑝 ∈ ℕ ) |
6 |
|
simpl |
⊢ ( ( 𝐾 ∈ ℕ ∧ ( ( 2 ↑ 𝐾 ) + 1 ) ∈ ℙ ) → 𝐾 ∈ ℕ ) |
7 |
|
nndivides |
⊢ ( ( 𝑝 ∈ ℕ ∧ 𝐾 ∈ ℕ ) → ( 𝑝 ∥ 𝐾 ↔ ∃ 𝑚 ∈ ℕ ( 𝑚 · 𝑝 ) = 𝐾 ) ) |
8 |
5 6 7
|
syl2anr |
⊢ ( ( ( 𝐾 ∈ ℕ ∧ ( ( 2 ↑ 𝐾 ) + 1 ) ∈ ℙ ) ∧ 𝑝 ∈ ( ℙ ∖ { 2 } ) ) → ( 𝑝 ∥ 𝐾 ↔ ∃ 𝑚 ∈ ℕ ( 𝑚 · 𝑝 ) = 𝐾 ) ) |
9 |
|
2re |
⊢ 2 ∈ ℝ |
10 |
9
|
a1i |
⊢ ( 𝑚 ∈ ℕ → 2 ∈ ℝ ) |
11 |
|
nnnn0 |
⊢ ( 𝑚 ∈ ℕ → 𝑚 ∈ ℕ0 ) |
12 |
|
1le2 |
⊢ 1 ≤ 2 |
13 |
12
|
a1i |
⊢ ( 𝑚 ∈ ℕ → 1 ≤ 2 ) |
14 |
10 11 13
|
expge1d |
⊢ ( 𝑚 ∈ ℕ → 1 ≤ ( 2 ↑ 𝑚 ) ) |
15 |
|
1zzd |
⊢ ( 𝑚 ∈ ℕ → 1 ∈ ℤ ) |
16 |
|
2nn |
⊢ 2 ∈ ℕ |
17 |
16
|
a1i |
⊢ ( 𝑚 ∈ ℕ → 2 ∈ ℕ ) |
18 |
17 11
|
nnexpcld |
⊢ ( 𝑚 ∈ ℕ → ( 2 ↑ 𝑚 ) ∈ ℕ ) |
19 |
18
|
nnzd |
⊢ ( 𝑚 ∈ ℕ → ( 2 ↑ 𝑚 ) ∈ ℤ ) |
20 |
|
zleltp1 |
⊢ ( ( 1 ∈ ℤ ∧ ( 2 ↑ 𝑚 ) ∈ ℤ ) → ( 1 ≤ ( 2 ↑ 𝑚 ) ↔ 1 < ( ( 2 ↑ 𝑚 ) + 1 ) ) ) |
21 |
15 19 20
|
syl2anc |
⊢ ( 𝑚 ∈ ℕ → ( 1 ≤ ( 2 ↑ 𝑚 ) ↔ 1 < ( ( 2 ↑ 𝑚 ) + 1 ) ) ) |
22 |
14 21
|
mpbid |
⊢ ( 𝑚 ∈ ℕ → 1 < ( ( 2 ↑ 𝑚 ) + 1 ) ) |
23 |
18
|
nncnd |
⊢ ( 𝑚 ∈ ℕ → ( 2 ↑ 𝑚 ) ∈ ℂ ) |
24 |
|
1cnd |
⊢ ( 𝑚 ∈ ℕ → 1 ∈ ℂ ) |
25 |
|
subneg |
⊢ ( ( ( 2 ↑ 𝑚 ) ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 2 ↑ 𝑚 ) − - 1 ) = ( ( 2 ↑ 𝑚 ) + 1 ) ) |
26 |
25
|
breq2d |
⊢ ( ( ( 2 ↑ 𝑚 ) ∈ ℂ ∧ 1 ∈ ℂ ) → ( 1 < ( ( 2 ↑ 𝑚 ) − - 1 ) ↔ 1 < ( ( 2 ↑ 𝑚 ) + 1 ) ) ) |
27 |
23 24 26
|
syl2anc |
⊢ ( 𝑚 ∈ ℕ → ( 1 < ( ( 2 ↑ 𝑚 ) − - 1 ) ↔ 1 < ( ( 2 ↑ 𝑚 ) + 1 ) ) ) |
28 |
22 27
|
mpbird |
⊢ ( 𝑚 ∈ ℕ → 1 < ( ( 2 ↑ 𝑚 ) − - 1 ) ) |
29 |
28
|
adantl |
⊢ ( ( 𝑝 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑚 ∈ ℕ ) → 1 < ( ( 2 ↑ 𝑚 ) − - 1 ) ) |
30 |
29
|
ad2antlr |
⊢ ( ( ( 𝐾 ∈ ℕ ∧ ( 𝑝 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑚 ∈ ℕ ) ) ∧ ( 𝑚 · 𝑝 ) = 𝐾 ) → 1 < ( ( 2 ↑ 𝑚 ) − - 1 ) ) |
31 |
18
|
nnred |
⊢ ( 𝑚 ∈ ℕ → ( 2 ↑ 𝑚 ) ∈ ℝ ) |
32 |
31
|
adantl |
⊢ ( ( 𝑝 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑚 ∈ ℕ ) → ( 2 ↑ 𝑚 ) ∈ ℝ ) |
33 |
16
|
a1i |
⊢ ( ( 𝑝 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑚 ∈ ℕ ) → 2 ∈ ℕ ) |
34 |
11
|
adantl |
⊢ ( ( 𝑝 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑚 ∈ ℕ ) → 𝑚 ∈ ℕ0 ) |
35 |
5
|
nnnn0d |
⊢ ( 𝑝 ∈ ( ℙ ∖ { 2 } ) → 𝑝 ∈ ℕ0 ) |
36 |
35
|
adantr |
⊢ ( ( 𝑝 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑚 ∈ ℕ ) → 𝑝 ∈ ℕ0 ) |
37 |
34 36
|
nn0mulcld |
⊢ ( ( 𝑝 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑚 ∈ ℕ ) → ( 𝑚 · 𝑝 ) ∈ ℕ0 ) |
38 |
33 37
|
nnexpcld |
⊢ ( ( 𝑝 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑚 ∈ ℕ ) → ( 2 ↑ ( 𝑚 · 𝑝 ) ) ∈ ℕ ) |
39 |
38
|
nnred |
⊢ ( ( 𝑝 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑚 ∈ ℕ ) → ( 2 ↑ ( 𝑚 · 𝑝 ) ) ∈ ℝ ) |
40 |
|
1red |
⊢ ( ( 𝑝 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑚 ∈ ℕ ) → 1 ∈ ℝ ) |
41 |
9
|
a1i |
⊢ ( ( 𝑝 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑚 ∈ ℕ ) → 2 ∈ ℝ ) |
42 |
|
nnz |
⊢ ( 𝑚 ∈ ℕ → 𝑚 ∈ ℤ ) |
43 |
42
|
adantl |
⊢ ( ( 𝑝 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑚 ∈ ℕ ) → 𝑚 ∈ ℤ ) |
44 |
5
|
nnzd |
⊢ ( 𝑝 ∈ ( ℙ ∖ { 2 } ) → 𝑝 ∈ ℤ ) |
45 |
44
|
adantr |
⊢ ( ( 𝑝 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑚 ∈ ℕ ) → 𝑝 ∈ ℤ ) |
46 |
43 45
|
zmulcld |
⊢ ( ( 𝑝 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑚 ∈ ℕ ) → ( 𝑚 · 𝑝 ) ∈ ℤ ) |
47 |
|
1lt2 |
⊢ 1 < 2 |
48 |
47
|
a1i |
⊢ ( ( 𝑝 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑚 ∈ ℕ ) → 1 < 2 ) |
49 |
|
prmgt1 |
⊢ ( 𝑝 ∈ ℙ → 1 < 𝑝 ) |
50 |
3 49
|
syl |
⊢ ( 𝑝 ∈ ( ℙ ∖ { 2 } ) → 1 < 𝑝 ) |
51 |
50
|
adantr |
⊢ ( ( 𝑝 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑚 ∈ ℕ ) → 1 < 𝑝 ) |
52 |
|
nnre |
⊢ ( 𝑚 ∈ ℕ → 𝑚 ∈ ℝ ) |
53 |
52
|
adantl |
⊢ ( ( 𝑝 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑚 ∈ ℕ ) → 𝑚 ∈ ℝ ) |
54 |
5
|
nnred |
⊢ ( 𝑝 ∈ ( ℙ ∖ { 2 } ) → 𝑝 ∈ ℝ ) |
55 |
54
|
adantr |
⊢ ( ( 𝑝 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑚 ∈ ℕ ) → 𝑝 ∈ ℝ ) |
56 |
|
nngt0 |
⊢ ( 𝑚 ∈ ℕ → 0 < 𝑚 ) |
57 |
56
|
adantl |
⊢ ( ( 𝑝 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑚 ∈ ℕ ) → 0 < 𝑚 ) |
58 |
|
ltmulgt11 |
⊢ ( ( 𝑚 ∈ ℝ ∧ 𝑝 ∈ ℝ ∧ 0 < 𝑚 ) → ( 1 < 𝑝 ↔ 𝑚 < ( 𝑚 · 𝑝 ) ) ) |
59 |
53 55 57 58
|
syl3anc |
⊢ ( ( 𝑝 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑚 ∈ ℕ ) → ( 1 < 𝑝 ↔ 𝑚 < ( 𝑚 · 𝑝 ) ) ) |
60 |
51 59
|
mpbid |
⊢ ( ( 𝑝 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑚 ∈ ℕ ) → 𝑚 < ( 𝑚 · 𝑝 ) ) |
61 |
|
ltexp2a |
⊢ ( ( ( 2 ∈ ℝ ∧ 𝑚 ∈ ℤ ∧ ( 𝑚 · 𝑝 ) ∈ ℤ ) ∧ ( 1 < 2 ∧ 𝑚 < ( 𝑚 · 𝑝 ) ) ) → ( 2 ↑ 𝑚 ) < ( 2 ↑ ( 𝑚 · 𝑝 ) ) ) |
62 |
41 43 46 48 60 61
|
syl32anc |
⊢ ( ( 𝑝 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑚 ∈ ℕ ) → ( 2 ↑ 𝑚 ) < ( 2 ↑ ( 𝑚 · 𝑝 ) ) ) |
63 |
32 39 40 62
|
ltadd1dd |
⊢ ( ( 𝑝 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑚 ∈ ℕ ) → ( ( 2 ↑ 𝑚 ) + 1 ) < ( ( 2 ↑ ( 𝑚 · 𝑝 ) ) + 1 ) ) |
64 |
63
|
ad2antlr |
⊢ ( ( ( 𝐾 ∈ ℕ ∧ ( 𝑝 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑚 ∈ ℕ ) ) ∧ ( 𝑚 · 𝑝 ) = 𝐾 ) → ( ( 2 ↑ 𝑚 ) + 1 ) < ( ( 2 ↑ ( 𝑚 · 𝑝 ) ) + 1 ) ) |
65 |
23 24
|
subnegd |
⊢ ( 𝑚 ∈ ℕ → ( ( 2 ↑ 𝑚 ) − - 1 ) = ( ( 2 ↑ 𝑚 ) + 1 ) ) |
66 |
65
|
eqcomd |
⊢ ( 𝑚 ∈ ℕ → ( ( 2 ↑ 𝑚 ) + 1 ) = ( ( 2 ↑ 𝑚 ) − - 1 ) ) |
67 |
66
|
adantl |
⊢ ( ( 𝑝 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑚 ∈ ℕ ) → ( ( 2 ↑ 𝑚 ) + 1 ) = ( ( 2 ↑ 𝑚 ) − - 1 ) ) |
68 |
67
|
ad2antlr |
⊢ ( ( ( 𝐾 ∈ ℕ ∧ ( 𝑝 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑚 ∈ ℕ ) ) ∧ ( 𝑚 · 𝑝 ) = 𝐾 ) → ( ( 2 ↑ 𝑚 ) + 1 ) = ( ( 2 ↑ 𝑚 ) − - 1 ) ) |
69 |
|
oveq2 |
⊢ ( ( 𝑚 · 𝑝 ) = 𝐾 → ( 2 ↑ ( 𝑚 · 𝑝 ) ) = ( 2 ↑ 𝐾 ) ) |
70 |
69
|
oveq1d |
⊢ ( ( 𝑚 · 𝑝 ) = 𝐾 → ( ( 2 ↑ ( 𝑚 · 𝑝 ) ) + 1 ) = ( ( 2 ↑ 𝐾 ) + 1 ) ) |
71 |
70
|
adantl |
⊢ ( ( ( 𝐾 ∈ ℕ ∧ ( 𝑝 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑚 ∈ ℕ ) ) ∧ ( 𝑚 · 𝑝 ) = 𝐾 ) → ( ( 2 ↑ ( 𝑚 · 𝑝 ) ) + 1 ) = ( ( 2 ↑ 𝐾 ) + 1 ) ) |
72 |
64 68 71
|
3brtr3d |
⊢ ( ( ( 𝐾 ∈ ℕ ∧ ( 𝑝 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑚 ∈ ℕ ) ) ∧ ( 𝑚 · 𝑝 ) = 𝐾 ) → ( ( 2 ↑ 𝑚 ) − - 1 ) < ( ( 2 ↑ 𝐾 ) + 1 ) ) |
73 |
|
neg1z |
⊢ - 1 ∈ ℤ |
74 |
73
|
a1i |
⊢ ( 𝑚 ∈ ℕ → - 1 ∈ ℤ ) |
75 |
19 74
|
zsubcld |
⊢ ( 𝑚 ∈ ℕ → ( ( 2 ↑ 𝑚 ) − - 1 ) ∈ ℤ ) |
76 |
75
|
adantl |
⊢ ( ( 𝑝 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑚 ∈ ℕ ) → ( ( 2 ↑ 𝑚 ) − - 1 ) ∈ ℤ ) |
77 |
|
fzofi |
⊢ ( 0 ..^ 𝑝 ) ∈ Fin |
78 |
77
|
a1i |
⊢ ( ( 𝑝 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑚 ∈ ℕ ) → ( 0 ..^ 𝑝 ) ∈ Fin ) |
79 |
19
|
adantl |
⊢ ( ( 𝑝 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑚 ∈ ℕ ) → ( 2 ↑ 𝑚 ) ∈ ℤ ) |
80 |
|
elfzonn0 |
⊢ ( 𝑘 ∈ ( 0 ..^ 𝑝 ) → 𝑘 ∈ ℕ0 ) |
81 |
|
zexpcl |
⊢ ( ( ( 2 ↑ 𝑚 ) ∈ ℤ ∧ 𝑘 ∈ ℕ0 ) → ( ( 2 ↑ 𝑚 ) ↑ 𝑘 ) ∈ ℤ ) |
82 |
79 80 81
|
syl2an |
⊢ ( ( ( 𝑝 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑚 ∈ ℕ ) ∧ 𝑘 ∈ ( 0 ..^ 𝑝 ) ) → ( ( 2 ↑ 𝑚 ) ↑ 𝑘 ) ∈ ℤ ) |
83 |
73
|
a1i |
⊢ ( ( ( 𝑝 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑚 ∈ ℕ ) ∧ 𝑘 ∈ ( 0 ..^ 𝑝 ) ) → - 1 ∈ ℤ ) |
84 |
|
fzonnsub |
⊢ ( 𝑘 ∈ ( 0 ..^ 𝑝 ) → ( 𝑝 − 𝑘 ) ∈ ℕ ) |
85 |
84
|
adantl |
⊢ ( ( ( 𝑝 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑚 ∈ ℕ ) ∧ 𝑘 ∈ ( 0 ..^ 𝑝 ) ) → ( 𝑝 − 𝑘 ) ∈ ℕ ) |
86 |
|
nnm1nn0 |
⊢ ( ( 𝑝 − 𝑘 ) ∈ ℕ → ( ( 𝑝 − 𝑘 ) − 1 ) ∈ ℕ0 ) |
87 |
85 86
|
syl |
⊢ ( ( ( 𝑝 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑚 ∈ ℕ ) ∧ 𝑘 ∈ ( 0 ..^ 𝑝 ) ) → ( ( 𝑝 − 𝑘 ) − 1 ) ∈ ℕ0 ) |
88 |
|
zexpcl |
⊢ ( ( - 1 ∈ ℤ ∧ ( ( 𝑝 − 𝑘 ) − 1 ) ∈ ℕ0 ) → ( - 1 ↑ ( ( 𝑝 − 𝑘 ) − 1 ) ) ∈ ℤ ) |
89 |
83 87 88
|
syl2anc |
⊢ ( ( ( 𝑝 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑚 ∈ ℕ ) ∧ 𝑘 ∈ ( 0 ..^ 𝑝 ) ) → ( - 1 ↑ ( ( 𝑝 − 𝑘 ) − 1 ) ) ∈ ℤ ) |
90 |
82 89
|
zmulcld |
⊢ ( ( ( 𝑝 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑚 ∈ ℕ ) ∧ 𝑘 ∈ ( 0 ..^ 𝑝 ) ) → ( ( ( 2 ↑ 𝑚 ) ↑ 𝑘 ) · ( - 1 ↑ ( ( 𝑝 − 𝑘 ) − 1 ) ) ) ∈ ℤ ) |
91 |
78 90
|
fsumzcl |
⊢ ( ( 𝑝 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑚 ∈ ℕ ) → Σ 𝑘 ∈ ( 0 ..^ 𝑝 ) ( ( ( 2 ↑ 𝑚 ) ↑ 𝑘 ) · ( - 1 ↑ ( ( 𝑝 − 𝑘 ) − 1 ) ) ) ∈ ℤ ) |
92 |
|
dvdsmul1 |
⊢ ( ( ( ( 2 ↑ 𝑚 ) − - 1 ) ∈ ℤ ∧ Σ 𝑘 ∈ ( 0 ..^ 𝑝 ) ( ( ( 2 ↑ 𝑚 ) ↑ 𝑘 ) · ( - 1 ↑ ( ( 𝑝 − 𝑘 ) − 1 ) ) ) ∈ ℤ ) → ( ( 2 ↑ 𝑚 ) − - 1 ) ∥ ( ( ( 2 ↑ 𝑚 ) − - 1 ) · Σ 𝑘 ∈ ( 0 ..^ 𝑝 ) ( ( ( 2 ↑ 𝑚 ) ↑ 𝑘 ) · ( - 1 ↑ ( ( 𝑝 − 𝑘 ) − 1 ) ) ) ) ) |
93 |
76 91 92
|
syl2anc |
⊢ ( ( 𝑝 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑚 ∈ ℕ ) → ( ( 2 ↑ 𝑚 ) − - 1 ) ∥ ( ( ( 2 ↑ 𝑚 ) − - 1 ) · Σ 𝑘 ∈ ( 0 ..^ 𝑝 ) ( ( ( 2 ↑ 𝑚 ) ↑ 𝑘 ) · ( - 1 ↑ ( ( 𝑝 − 𝑘 ) − 1 ) ) ) ) ) |
94 |
93
|
ad2antlr |
⊢ ( ( ( 𝐾 ∈ ℕ ∧ ( 𝑝 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑚 ∈ ℕ ) ) ∧ ( 𝑚 · 𝑝 ) = 𝐾 ) → ( ( 2 ↑ 𝑚 ) − - 1 ) ∥ ( ( ( 2 ↑ 𝑚 ) − - 1 ) · Σ 𝑘 ∈ ( 0 ..^ 𝑝 ) ( ( ( 2 ↑ 𝑚 ) ↑ 𝑘 ) · ( - 1 ↑ ( ( 𝑝 − 𝑘 ) − 1 ) ) ) ) ) |
95 |
23
|
adantl |
⊢ ( ( 𝑝 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑚 ∈ ℕ ) → ( 2 ↑ 𝑚 ) ∈ ℂ ) |
96 |
|
neg1cn |
⊢ - 1 ∈ ℂ |
97 |
96
|
a1i |
⊢ ( ( 𝑝 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑚 ∈ ℕ ) → - 1 ∈ ℂ ) |
98 |
|
pwdif |
⊢ ( ( 𝑝 ∈ ℕ0 ∧ ( 2 ↑ 𝑚 ) ∈ ℂ ∧ - 1 ∈ ℂ ) → ( ( ( 2 ↑ 𝑚 ) ↑ 𝑝 ) − ( - 1 ↑ 𝑝 ) ) = ( ( ( 2 ↑ 𝑚 ) − - 1 ) · Σ 𝑘 ∈ ( 0 ..^ 𝑝 ) ( ( ( 2 ↑ 𝑚 ) ↑ 𝑘 ) · ( - 1 ↑ ( ( 𝑝 − 𝑘 ) − 1 ) ) ) ) ) |
99 |
36 95 97 98
|
syl3anc |
⊢ ( ( 𝑝 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑚 ∈ ℕ ) → ( ( ( 2 ↑ 𝑚 ) ↑ 𝑝 ) − ( - 1 ↑ 𝑝 ) ) = ( ( ( 2 ↑ 𝑚 ) − - 1 ) · Σ 𝑘 ∈ ( 0 ..^ 𝑝 ) ( ( ( 2 ↑ 𝑚 ) ↑ 𝑘 ) · ( - 1 ↑ ( ( 𝑝 − 𝑘 ) − 1 ) ) ) ) ) |
100 |
99
|
breq2d |
⊢ ( ( 𝑝 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑚 ∈ ℕ ) → ( ( ( 2 ↑ 𝑚 ) − - 1 ) ∥ ( ( ( 2 ↑ 𝑚 ) ↑ 𝑝 ) − ( - 1 ↑ 𝑝 ) ) ↔ ( ( 2 ↑ 𝑚 ) − - 1 ) ∥ ( ( ( 2 ↑ 𝑚 ) − - 1 ) · Σ 𝑘 ∈ ( 0 ..^ 𝑝 ) ( ( ( 2 ↑ 𝑚 ) ↑ 𝑘 ) · ( - 1 ↑ ( ( 𝑝 − 𝑘 ) − 1 ) ) ) ) ) ) |
101 |
100
|
ad2antlr |
⊢ ( ( ( 𝐾 ∈ ℕ ∧ ( 𝑝 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑚 ∈ ℕ ) ) ∧ ( 𝑚 · 𝑝 ) = 𝐾 ) → ( ( ( 2 ↑ 𝑚 ) − - 1 ) ∥ ( ( ( 2 ↑ 𝑚 ) ↑ 𝑝 ) − ( - 1 ↑ 𝑝 ) ) ↔ ( ( 2 ↑ 𝑚 ) − - 1 ) ∥ ( ( ( 2 ↑ 𝑚 ) − - 1 ) · Σ 𝑘 ∈ ( 0 ..^ 𝑝 ) ( ( ( 2 ↑ 𝑚 ) ↑ 𝑘 ) · ( - 1 ↑ ( ( 𝑝 − 𝑘 ) − 1 ) ) ) ) ) ) |
102 |
94 101
|
mpbird |
⊢ ( ( ( 𝐾 ∈ ℕ ∧ ( 𝑝 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑚 ∈ ℕ ) ) ∧ ( 𝑚 · 𝑝 ) = 𝐾 ) → ( ( 2 ↑ 𝑚 ) − - 1 ) ∥ ( ( ( 2 ↑ 𝑚 ) ↑ 𝑝 ) − ( - 1 ↑ 𝑝 ) ) ) |
103 |
|
2cnd |
⊢ ( 𝐾 ∈ ℕ → 2 ∈ ℂ ) |
104 |
|
nnnn0 |
⊢ ( 𝐾 ∈ ℕ → 𝐾 ∈ ℕ0 ) |
105 |
103 104
|
expcld |
⊢ ( 𝐾 ∈ ℕ → ( 2 ↑ 𝐾 ) ∈ ℂ ) |
106 |
|
1cnd |
⊢ ( 𝐾 ∈ ℕ → 1 ∈ ℂ ) |
107 |
105 106
|
subnegd |
⊢ ( 𝐾 ∈ ℕ → ( ( 2 ↑ 𝐾 ) − - 1 ) = ( ( 2 ↑ 𝐾 ) + 1 ) ) |
108 |
107
|
eqcomd |
⊢ ( 𝐾 ∈ ℕ → ( ( 2 ↑ 𝐾 ) + 1 ) = ( ( 2 ↑ 𝐾 ) − - 1 ) ) |
109 |
108
|
adantr |
⊢ ( ( 𝐾 ∈ ℕ ∧ ( 𝑝 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑚 ∈ ℕ ) ) → ( ( 2 ↑ 𝐾 ) + 1 ) = ( ( 2 ↑ 𝐾 ) − - 1 ) ) |
110 |
109
|
adantr |
⊢ ( ( ( 𝐾 ∈ ℕ ∧ ( 𝑝 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑚 ∈ ℕ ) ) ∧ ( 𝑚 · 𝑝 ) = 𝐾 ) → ( ( 2 ↑ 𝐾 ) + 1 ) = ( ( 2 ↑ 𝐾 ) − - 1 ) ) |
111 |
|
oveq2 |
⊢ ( 𝐾 = ( 𝑚 · 𝑝 ) → ( 2 ↑ 𝐾 ) = ( 2 ↑ ( 𝑚 · 𝑝 ) ) ) |
112 |
111
|
eqcoms |
⊢ ( ( 𝑚 · 𝑝 ) = 𝐾 → ( 2 ↑ 𝐾 ) = ( 2 ↑ ( 𝑚 · 𝑝 ) ) ) |
113 |
112
|
adantl |
⊢ ( ( ( 𝐾 ∈ ℕ ∧ ( 𝑝 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑚 ∈ ℕ ) ) ∧ ( 𝑚 · 𝑝 ) = 𝐾 ) → ( 2 ↑ 𝐾 ) = ( 2 ↑ ( 𝑚 · 𝑝 ) ) ) |
114 |
|
2cnd |
⊢ ( ( 𝑝 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑚 ∈ ℕ ) → 2 ∈ ℂ ) |
115 |
114 36 34
|
expmuld |
⊢ ( ( 𝑝 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑚 ∈ ℕ ) → ( 2 ↑ ( 𝑚 · 𝑝 ) ) = ( ( 2 ↑ 𝑚 ) ↑ 𝑝 ) ) |
116 |
115
|
ad2antlr |
⊢ ( ( ( 𝐾 ∈ ℕ ∧ ( 𝑝 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑚 ∈ ℕ ) ) ∧ ( 𝑚 · 𝑝 ) = 𝐾 ) → ( 2 ↑ ( 𝑚 · 𝑝 ) ) = ( ( 2 ↑ 𝑚 ) ↑ 𝑝 ) ) |
117 |
113 116
|
eqtrd |
⊢ ( ( ( 𝐾 ∈ ℕ ∧ ( 𝑝 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑚 ∈ ℕ ) ) ∧ ( 𝑚 · 𝑝 ) = 𝐾 ) → ( 2 ↑ 𝐾 ) = ( ( 2 ↑ 𝑚 ) ↑ 𝑝 ) ) |
118 |
|
1exp |
⊢ ( 𝑝 ∈ ℤ → ( 1 ↑ 𝑝 ) = 1 ) |
119 |
44 118
|
syl |
⊢ ( 𝑝 ∈ ( ℙ ∖ { 2 } ) → ( 1 ↑ 𝑝 ) = 1 ) |
120 |
119
|
eqcomd |
⊢ ( 𝑝 ∈ ( ℙ ∖ { 2 } ) → 1 = ( 1 ↑ 𝑝 ) ) |
121 |
120
|
negeqd |
⊢ ( 𝑝 ∈ ( ℙ ∖ { 2 } ) → - 1 = - ( 1 ↑ 𝑝 ) ) |
122 |
|
1cnd |
⊢ ( 𝑝 ∈ ( ℙ ∖ { 2 } ) → 1 ∈ ℂ ) |
123 |
|
oddn2prm |
⊢ ( 𝑝 ∈ ( ℙ ∖ { 2 } ) → ¬ 2 ∥ 𝑝 ) |
124 |
|
oexpneg |
⊢ ( ( 1 ∈ ℂ ∧ 𝑝 ∈ ℕ ∧ ¬ 2 ∥ 𝑝 ) → ( - 1 ↑ 𝑝 ) = - ( 1 ↑ 𝑝 ) ) |
125 |
122 5 123 124
|
syl3anc |
⊢ ( 𝑝 ∈ ( ℙ ∖ { 2 } ) → ( - 1 ↑ 𝑝 ) = - ( 1 ↑ 𝑝 ) ) |
126 |
125
|
eqcomd |
⊢ ( 𝑝 ∈ ( ℙ ∖ { 2 } ) → - ( 1 ↑ 𝑝 ) = ( - 1 ↑ 𝑝 ) ) |
127 |
121 126
|
eqtrd |
⊢ ( 𝑝 ∈ ( ℙ ∖ { 2 } ) → - 1 = ( - 1 ↑ 𝑝 ) ) |
128 |
127
|
adantr |
⊢ ( ( 𝑝 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑚 ∈ ℕ ) → - 1 = ( - 1 ↑ 𝑝 ) ) |
129 |
128
|
ad2antlr |
⊢ ( ( ( 𝐾 ∈ ℕ ∧ ( 𝑝 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑚 ∈ ℕ ) ) ∧ ( 𝑚 · 𝑝 ) = 𝐾 ) → - 1 = ( - 1 ↑ 𝑝 ) ) |
130 |
117 129
|
oveq12d |
⊢ ( ( ( 𝐾 ∈ ℕ ∧ ( 𝑝 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑚 ∈ ℕ ) ) ∧ ( 𝑚 · 𝑝 ) = 𝐾 ) → ( ( 2 ↑ 𝐾 ) − - 1 ) = ( ( ( 2 ↑ 𝑚 ) ↑ 𝑝 ) − ( - 1 ↑ 𝑝 ) ) ) |
131 |
110 130
|
eqtrd |
⊢ ( ( ( 𝐾 ∈ ℕ ∧ ( 𝑝 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑚 ∈ ℕ ) ) ∧ ( 𝑚 · 𝑝 ) = 𝐾 ) → ( ( 2 ↑ 𝐾 ) + 1 ) = ( ( ( 2 ↑ 𝑚 ) ↑ 𝑝 ) − ( - 1 ↑ 𝑝 ) ) ) |
132 |
131
|
breq2d |
⊢ ( ( ( 𝐾 ∈ ℕ ∧ ( 𝑝 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑚 ∈ ℕ ) ) ∧ ( 𝑚 · 𝑝 ) = 𝐾 ) → ( ( ( 2 ↑ 𝑚 ) − - 1 ) ∥ ( ( 2 ↑ 𝐾 ) + 1 ) ↔ ( ( 2 ↑ 𝑚 ) − - 1 ) ∥ ( ( ( 2 ↑ 𝑚 ) ↑ 𝑝 ) − ( - 1 ↑ 𝑝 ) ) ) ) |
133 |
102 132
|
mpbird |
⊢ ( ( ( 𝐾 ∈ ℕ ∧ ( 𝑝 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑚 ∈ ℕ ) ) ∧ ( 𝑚 · 𝑝 ) = 𝐾 ) → ( ( 2 ↑ 𝑚 ) − - 1 ) ∥ ( ( 2 ↑ 𝐾 ) + 1 ) ) |
134 |
30 72 133
|
dvdsnprmd |
⊢ ( ( ( 𝐾 ∈ ℕ ∧ ( 𝑝 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑚 ∈ ℕ ) ) ∧ ( 𝑚 · 𝑝 ) = 𝐾 ) → ¬ ( ( 2 ↑ 𝐾 ) + 1 ) ∈ ℙ ) |
135 |
134
|
pm2.21d |
⊢ ( ( ( 𝐾 ∈ ℕ ∧ ( 𝑝 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑚 ∈ ℕ ) ) ∧ ( 𝑚 · 𝑝 ) = 𝐾 ) → ( ( ( 2 ↑ 𝐾 ) + 1 ) ∈ ℙ → ∃ 𝑛 ∈ ℕ0 𝐾 = ( 2 ↑ 𝑛 ) ) ) |
136 |
135
|
ex |
⊢ ( ( 𝐾 ∈ ℕ ∧ ( 𝑝 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑚 ∈ ℕ ) ) → ( ( 𝑚 · 𝑝 ) = 𝐾 → ( ( ( 2 ↑ 𝐾 ) + 1 ) ∈ ℙ → ∃ 𝑛 ∈ ℕ0 𝐾 = ( 2 ↑ 𝑛 ) ) ) ) |
137 |
136
|
com23 |
⊢ ( ( 𝐾 ∈ ℕ ∧ ( 𝑝 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑚 ∈ ℕ ) ) → ( ( ( 2 ↑ 𝐾 ) + 1 ) ∈ ℙ → ( ( 𝑚 · 𝑝 ) = 𝐾 → ∃ 𝑛 ∈ ℕ0 𝐾 = ( 2 ↑ 𝑛 ) ) ) ) |
138 |
137
|
impancom |
⊢ ( ( 𝐾 ∈ ℕ ∧ ( ( 2 ↑ 𝐾 ) + 1 ) ∈ ℙ ) → ( ( 𝑝 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑚 ∈ ℕ ) → ( ( 𝑚 · 𝑝 ) = 𝐾 → ∃ 𝑛 ∈ ℕ0 𝐾 = ( 2 ↑ 𝑛 ) ) ) ) |
139 |
138
|
impl |
⊢ ( ( ( ( 𝐾 ∈ ℕ ∧ ( ( 2 ↑ 𝐾 ) + 1 ) ∈ ℙ ) ∧ 𝑝 ∈ ( ℙ ∖ { 2 } ) ) ∧ 𝑚 ∈ ℕ ) → ( ( 𝑚 · 𝑝 ) = 𝐾 → ∃ 𝑛 ∈ ℕ0 𝐾 = ( 2 ↑ 𝑛 ) ) ) |
140 |
139
|
rexlimdva |
⊢ ( ( ( 𝐾 ∈ ℕ ∧ ( ( 2 ↑ 𝐾 ) + 1 ) ∈ ℙ ) ∧ 𝑝 ∈ ( ℙ ∖ { 2 } ) ) → ( ∃ 𝑚 ∈ ℕ ( 𝑚 · 𝑝 ) = 𝐾 → ∃ 𝑛 ∈ ℕ0 𝐾 = ( 2 ↑ 𝑛 ) ) ) |
141 |
8 140
|
sylbid |
⊢ ( ( ( 𝐾 ∈ ℕ ∧ ( ( 2 ↑ 𝐾 ) + 1 ) ∈ ℙ ) ∧ 𝑝 ∈ ( ℙ ∖ { 2 } ) ) → ( 𝑝 ∥ 𝐾 → ∃ 𝑛 ∈ ℕ0 𝐾 = ( 2 ↑ 𝑛 ) ) ) |
142 |
141
|
rexlimdva |
⊢ ( ( 𝐾 ∈ ℕ ∧ ( ( 2 ↑ 𝐾 ) + 1 ) ∈ ℙ ) → ( ∃ 𝑝 ∈ ( ℙ ∖ { 2 } ) 𝑝 ∥ 𝐾 → ∃ 𝑛 ∈ ℕ0 𝐾 = ( 2 ↑ 𝑛 ) ) ) |
143 |
142
|
adantr |
⊢ ( ( ( 𝐾 ∈ ℕ ∧ ( ( 2 ↑ 𝐾 ) + 1 ) ∈ ℙ ) ∧ ¬ ∃ 𝑛 ∈ ℕ0 𝐾 = ( 2 ↑ 𝑛 ) ) → ( ∃ 𝑝 ∈ ( ℙ ∖ { 2 } ) 𝑝 ∥ 𝐾 → ∃ 𝑛 ∈ ℕ0 𝐾 = ( 2 ↑ 𝑛 ) ) ) |
144 |
2 143
|
mpd |
⊢ ( ( ( 𝐾 ∈ ℕ ∧ ( ( 2 ↑ 𝐾 ) + 1 ) ∈ ℙ ) ∧ ¬ ∃ 𝑛 ∈ ℕ0 𝐾 = ( 2 ↑ 𝑛 ) ) → ∃ 𝑛 ∈ ℕ0 𝐾 = ( 2 ↑ 𝑛 ) ) |
145 |
144
|
pm2.18da |
⊢ ( ( 𝐾 ∈ ℕ ∧ ( ( 2 ↑ 𝐾 ) + 1 ) ∈ ℙ ) → ∃ 𝑛 ∈ ℕ0 𝐾 = ( 2 ↑ 𝑛 ) ) |