| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oddprmdvds | ⊢ ( ( 𝐾  ∈  ℕ  ∧  ¬  ∃ 𝑛  ∈  ℕ0 𝐾  =  ( 2 ↑ 𝑛 ) )  →  ∃ 𝑝  ∈  ( ℙ  ∖  { 2 } ) 𝑝  ∥  𝐾 ) | 
						
							| 2 | 1 | adantlr | ⊢ ( ( ( 𝐾  ∈  ℕ  ∧  ( ( 2 ↑ 𝐾 )  +  1 )  ∈  ℙ )  ∧  ¬  ∃ 𝑛  ∈  ℕ0 𝐾  =  ( 2 ↑ 𝑛 ) )  →  ∃ 𝑝  ∈  ( ℙ  ∖  { 2 } ) 𝑝  ∥  𝐾 ) | 
						
							| 3 |  | eldifi | ⊢ ( 𝑝  ∈  ( ℙ  ∖  { 2 } )  →  𝑝  ∈  ℙ ) | 
						
							| 4 |  | prmnn | ⊢ ( 𝑝  ∈  ℙ  →  𝑝  ∈  ℕ ) | 
						
							| 5 | 3 4 | syl | ⊢ ( 𝑝  ∈  ( ℙ  ∖  { 2 } )  →  𝑝  ∈  ℕ ) | 
						
							| 6 |  | simpl | ⊢ ( ( 𝐾  ∈  ℕ  ∧  ( ( 2 ↑ 𝐾 )  +  1 )  ∈  ℙ )  →  𝐾  ∈  ℕ ) | 
						
							| 7 |  | nndivides | ⊢ ( ( 𝑝  ∈  ℕ  ∧  𝐾  ∈  ℕ )  →  ( 𝑝  ∥  𝐾  ↔  ∃ 𝑚  ∈  ℕ ( 𝑚  ·  𝑝 )  =  𝐾 ) ) | 
						
							| 8 | 5 6 7 | syl2anr | ⊢ ( ( ( 𝐾  ∈  ℕ  ∧  ( ( 2 ↑ 𝐾 )  +  1 )  ∈  ℙ )  ∧  𝑝  ∈  ( ℙ  ∖  { 2 } ) )  →  ( 𝑝  ∥  𝐾  ↔  ∃ 𝑚  ∈  ℕ ( 𝑚  ·  𝑝 )  =  𝐾 ) ) | 
						
							| 9 |  | 2re | ⊢ 2  ∈  ℝ | 
						
							| 10 | 9 | a1i | ⊢ ( 𝑚  ∈  ℕ  →  2  ∈  ℝ ) | 
						
							| 11 |  | nnnn0 | ⊢ ( 𝑚  ∈  ℕ  →  𝑚  ∈  ℕ0 ) | 
						
							| 12 |  | 1le2 | ⊢ 1  ≤  2 | 
						
							| 13 | 12 | a1i | ⊢ ( 𝑚  ∈  ℕ  →  1  ≤  2 ) | 
						
							| 14 | 10 11 13 | expge1d | ⊢ ( 𝑚  ∈  ℕ  →  1  ≤  ( 2 ↑ 𝑚 ) ) | 
						
							| 15 |  | 1zzd | ⊢ ( 𝑚  ∈  ℕ  →  1  ∈  ℤ ) | 
						
							| 16 |  | 2nn | ⊢ 2  ∈  ℕ | 
						
							| 17 | 16 | a1i | ⊢ ( 𝑚  ∈  ℕ  →  2  ∈  ℕ ) | 
						
							| 18 | 17 11 | nnexpcld | ⊢ ( 𝑚  ∈  ℕ  →  ( 2 ↑ 𝑚 )  ∈  ℕ ) | 
						
							| 19 | 18 | nnzd | ⊢ ( 𝑚  ∈  ℕ  →  ( 2 ↑ 𝑚 )  ∈  ℤ ) | 
						
							| 20 |  | zleltp1 | ⊢ ( ( 1  ∈  ℤ  ∧  ( 2 ↑ 𝑚 )  ∈  ℤ )  →  ( 1  ≤  ( 2 ↑ 𝑚 )  ↔  1  <  ( ( 2 ↑ 𝑚 )  +  1 ) ) ) | 
						
							| 21 | 15 19 20 | syl2anc | ⊢ ( 𝑚  ∈  ℕ  →  ( 1  ≤  ( 2 ↑ 𝑚 )  ↔  1  <  ( ( 2 ↑ 𝑚 )  +  1 ) ) ) | 
						
							| 22 | 14 21 | mpbid | ⊢ ( 𝑚  ∈  ℕ  →  1  <  ( ( 2 ↑ 𝑚 )  +  1 ) ) | 
						
							| 23 | 18 | nncnd | ⊢ ( 𝑚  ∈  ℕ  →  ( 2 ↑ 𝑚 )  ∈  ℂ ) | 
						
							| 24 |  | 1cnd | ⊢ ( 𝑚  ∈  ℕ  →  1  ∈  ℂ ) | 
						
							| 25 |  | subneg | ⊢ ( ( ( 2 ↑ 𝑚 )  ∈  ℂ  ∧  1  ∈  ℂ )  →  ( ( 2 ↑ 𝑚 )  −  - 1 )  =  ( ( 2 ↑ 𝑚 )  +  1 ) ) | 
						
							| 26 | 25 | breq2d | ⊢ ( ( ( 2 ↑ 𝑚 )  ∈  ℂ  ∧  1  ∈  ℂ )  →  ( 1  <  ( ( 2 ↑ 𝑚 )  −  - 1 )  ↔  1  <  ( ( 2 ↑ 𝑚 )  +  1 ) ) ) | 
						
							| 27 | 23 24 26 | syl2anc | ⊢ ( 𝑚  ∈  ℕ  →  ( 1  <  ( ( 2 ↑ 𝑚 )  −  - 1 )  ↔  1  <  ( ( 2 ↑ 𝑚 )  +  1 ) ) ) | 
						
							| 28 | 22 27 | mpbird | ⊢ ( 𝑚  ∈  ℕ  →  1  <  ( ( 2 ↑ 𝑚 )  −  - 1 ) ) | 
						
							| 29 | 28 | adantl | ⊢ ( ( 𝑝  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑚  ∈  ℕ )  →  1  <  ( ( 2 ↑ 𝑚 )  −  - 1 ) ) | 
						
							| 30 | 29 | ad2antlr | ⊢ ( ( ( 𝐾  ∈  ℕ  ∧  ( 𝑝  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑚  ∈  ℕ ) )  ∧  ( 𝑚  ·  𝑝 )  =  𝐾 )  →  1  <  ( ( 2 ↑ 𝑚 )  −  - 1 ) ) | 
						
							| 31 | 18 | nnred | ⊢ ( 𝑚  ∈  ℕ  →  ( 2 ↑ 𝑚 )  ∈  ℝ ) | 
						
							| 32 | 31 | adantl | ⊢ ( ( 𝑝  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑚  ∈  ℕ )  →  ( 2 ↑ 𝑚 )  ∈  ℝ ) | 
						
							| 33 | 16 | a1i | ⊢ ( ( 𝑝  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑚  ∈  ℕ )  →  2  ∈  ℕ ) | 
						
							| 34 | 11 | adantl | ⊢ ( ( 𝑝  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑚  ∈  ℕ )  →  𝑚  ∈  ℕ0 ) | 
						
							| 35 | 5 | nnnn0d | ⊢ ( 𝑝  ∈  ( ℙ  ∖  { 2 } )  →  𝑝  ∈  ℕ0 ) | 
						
							| 36 | 35 | adantr | ⊢ ( ( 𝑝  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑚  ∈  ℕ )  →  𝑝  ∈  ℕ0 ) | 
						
							| 37 | 34 36 | nn0mulcld | ⊢ ( ( 𝑝  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑚  ∈  ℕ )  →  ( 𝑚  ·  𝑝 )  ∈  ℕ0 ) | 
						
							| 38 | 33 37 | nnexpcld | ⊢ ( ( 𝑝  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑚  ∈  ℕ )  →  ( 2 ↑ ( 𝑚  ·  𝑝 ) )  ∈  ℕ ) | 
						
							| 39 | 38 | nnred | ⊢ ( ( 𝑝  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑚  ∈  ℕ )  →  ( 2 ↑ ( 𝑚  ·  𝑝 ) )  ∈  ℝ ) | 
						
							| 40 |  | 1red | ⊢ ( ( 𝑝  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑚  ∈  ℕ )  →  1  ∈  ℝ ) | 
						
							| 41 | 9 | a1i | ⊢ ( ( 𝑝  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑚  ∈  ℕ )  →  2  ∈  ℝ ) | 
						
							| 42 |  | nnz | ⊢ ( 𝑚  ∈  ℕ  →  𝑚  ∈  ℤ ) | 
						
							| 43 | 42 | adantl | ⊢ ( ( 𝑝  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑚  ∈  ℕ )  →  𝑚  ∈  ℤ ) | 
						
							| 44 | 5 | nnzd | ⊢ ( 𝑝  ∈  ( ℙ  ∖  { 2 } )  →  𝑝  ∈  ℤ ) | 
						
							| 45 | 44 | adantr | ⊢ ( ( 𝑝  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑚  ∈  ℕ )  →  𝑝  ∈  ℤ ) | 
						
							| 46 | 43 45 | zmulcld | ⊢ ( ( 𝑝  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑚  ∈  ℕ )  →  ( 𝑚  ·  𝑝 )  ∈  ℤ ) | 
						
							| 47 |  | 1lt2 | ⊢ 1  <  2 | 
						
							| 48 | 47 | a1i | ⊢ ( ( 𝑝  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑚  ∈  ℕ )  →  1  <  2 ) | 
						
							| 49 |  | prmgt1 | ⊢ ( 𝑝  ∈  ℙ  →  1  <  𝑝 ) | 
						
							| 50 | 3 49 | syl | ⊢ ( 𝑝  ∈  ( ℙ  ∖  { 2 } )  →  1  <  𝑝 ) | 
						
							| 51 | 50 | adantr | ⊢ ( ( 𝑝  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑚  ∈  ℕ )  →  1  <  𝑝 ) | 
						
							| 52 |  | nnre | ⊢ ( 𝑚  ∈  ℕ  →  𝑚  ∈  ℝ ) | 
						
							| 53 | 52 | adantl | ⊢ ( ( 𝑝  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑚  ∈  ℕ )  →  𝑚  ∈  ℝ ) | 
						
							| 54 | 5 | nnred | ⊢ ( 𝑝  ∈  ( ℙ  ∖  { 2 } )  →  𝑝  ∈  ℝ ) | 
						
							| 55 | 54 | adantr | ⊢ ( ( 𝑝  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑚  ∈  ℕ )  →  𝑝  ∈  ℝ ) | 
						
							| 56 |  | nngt0 | ⊢ ( 𝑚  ∈  ℕ  →  0  <  𝑚 ) | 
						
							| 57 | 56 | adantl | ⊢ ( ( 𝑝  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑚  ∈  ℕ )  →  0  <  𝑚 ) | 
						
							| 58 |  | ltmulgt11 | ⊢ ( ( 𝑚  ∈  ℝ  ∧  𝑝  ∈  ℝ  ∧  0  <  𝑚 )  →  ( 1  <  𝑝  ↔  𝑚  <  ( 𝑚  ·  𝑝 ) ) ) | 
						
							| 59 | 53 55 57 58 | syl3anc | ⊢ ( ( 𝑝  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑚  ∈  ℕ )  →  ( 1  <  𝑝  ↔  𝑚  <  ( 𝑚  ·  𝑝 ) ) ) | 
						
							| 60 | 51 59 | mpbid | ⊢ ( ( 𝑝  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑚  ∈  ℕ )  →  𝑚  <  ( 𝑚  ·  𝑝 ) ) | 
						
							| 61 |  | ltexp2a | ⊢ ( ( ( 2  ∈  ℝ  ∧  𝑚  ∈  ℤ  ∧  ( 𝑚  ·  𝑝 )  ∈  ℤ )  ∧  ( 1  <  2  ∧  𝑚  <  ( 𝑚  ·  𝑝 ) ) )  →  ( 2 ↑ 𝑚 )  <  ( 2 ↑ ( 𝑚  ·  𝑝 ) ) ) | 
						
							| 62 | 41 43 46 48 60 61 | syl32anc | ⊢ ( ( 𝑝  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑚  ∈  ℕ )  →  ( 2 ↑ 𝑚 )  <  ( 2 ↑ ( 𝑚  ·  𝑝 ) ) ) | 
						
							| 63 | 32 39 40 62 | ltadd1dd | ⊢ ( ( 𝑝  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑚  ∈  ℕ )  →  ( ( 2 ↑ 𝑚 )  +  1 )  <  ( ( 2 ↑ ( 𝑚  ·  𝑝 ) )  +  1 ) ) | 
						
							| 64 | 63 | ad2antlr | ⊢ ( ( ( 𝐾  ∈  ℕ  ∧  ( 𝑝  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑚  ∈  ℕ ) )  ∧  ( 𝑚  ·  𝑝 )  =  𝐾 )  →  ( ( 2 ↑ 𝑚 )  +  1 )  <  ( ( 2 ↑ ( 𝑚  ·  𝑝 ) )  +  1 ) ) | 
						
							| 65 | 23 24 | subnegd | ⊢ ( 𝑚  ∈  ℕ  →  ( ( 2 ↑ 𝑚 )  −  - 1 )  =  ( ( 2 ↑ 𝑚 )  +  1 ) ) | 
						
							| 66 | 65 | eqcomd | ⊢ ( 𝑚  ∈  ℕ  →  ( ( 2 ↑ 𝑚 )  +  1 )  =  ( ( 2 ↑ 𝑚 )  −  - 1 ) ) | 
						
							| 67 | 66 | adantl | ⊢ ( ( 𝑝  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑚  ∈  ℕ )  →  ( ( 2 ↑ 𝑚 )  +  1 )  =  ( ( 2 ↑ 𝑚 )  −  - 1 ) ) | 
						
							| 68 | 67 | ad2antlr | ⊢ ( ( ( 𝐾  ∈  ℕ  ∧  ( 𝑝  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑚  ∈  ℕ ) )  ∧  ( 𝑚  ·  𝑝 )  =  𝐾 )  →  ( ( 2 ↑ 𝑚 )  +  1 )  =  ( ( 2 ↑ 𝑚 )  −  - 1 ) ) | 
						
							| 69 |  | oveq2 | ⊢ ( ( 𝑚  ·  𝑝 )  =  𝐾  →  ( 2 ↑ ( 𝑚  ·  𝑝 ) )  =  ( 2 ↑ 𝐾 ) ) | 
						
							| 70 | 69 | oveq1d | ⊢ ( ( 𝑚  ·  𝑝 )  =  𝐾  →  ( ( 2 ↑ ( 𝑚  ·  𝑝 ) )  +  1 )  =  ( ( 2 ↑ 𝐾 )  +  1 ) ) | 
						
							| 71 | 70 | adantl | ⊢ ( ( ( 𝐾  ∈  ℕ  ∧  ( 𝑝  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑚  ∈  ℕ ) )  ∧  ( 𝑚  ·  𝑝 )  =  𝐾 )  →  ( ( 2 ↑ ( 𝑚  ·  𝑝 ) )  +  1 )  =  ( ( 2 ↑ 𝐾 )  +  1 ) ) | 
						
							| 72 | 64 68 71 | 3brtr3d | ⊢ ( ( ( 𝐾  ∈  ℕ  ∧  ( 𝑝  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑚  ∈  ℕ ) )  ∧  ( 𝑚  ·  𝑝 )  =  𝐾 )  →  ( ( 2 ↑ 𝑚 )  −  - 1 )  <  ( ( 2 ↑ 𝐾 )  +  1 ) ) | 
						
							| 73 |  | neg1z | ⊢ - 1  ∈  ℤ | 
						
							| 74 | 73 | a1i | ⊢ ( 𝑚  ∈  ℕ  →  - 1  ∈  ℤ ) | 
						
							| 75 | 19 74 | zsubcld | ⊢ ( 𝑚  ∈  ℕ  →  ( ( 2 ↑ 𝑚 )  −  - 1 )  ∈  ℤ ) | 
						
							| 76 | 75 | adantl | ⊢ ( ( 𝑝  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑚  ∈  ℕ )  →  ( ( 2 ↑ 𝑚 )  −  - 1 )  ∈  ℤ ) | 
						
							| 77 |  | fzofi | ⊢ ( 0 ..^ 𝑝 )  ∈  Fin | 
						
							| 78 | 77 | a1i | ⊢ ( ( 𝑝  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑚  ∈  ℕ )  →  ( 0 ..^ 𝑝 )  ∈  Fin ) | 
						
							| 79 | 19 | adantl | ⊢ ( ( 𝑝  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑚  ∈  ℕ )  →  ( 2 ↑ 𝑚 )  ∈  ℤ ) | 
						
							| 80 |  | elfzonn0 | ⊢ ( 𝑘  ∈  ( 0 ..^ 𝑝 )  →  𝑘  ∈  ℕ0 ) | 
						
							| 81 |  | zexpcl | ⊢ ( ( ( 2 ↑ 𝑚 )  ∈  ℤ  ∧  𝑘  ∈  ℕ0 )  →  ( ( 2 ↑ 𝑚 ) ↑ 𝑘 )  ∈  ℤ ) | 
						
							| 82 | 79 80 81 | syl2an | ⊢ ( ( ( 𝑝  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑚  ∈  ℕ )  ∧  𝑘  ∈  ( 0 ..^ 𝑝 ) )  →  ( ( 2 ↑ 𝑚 ) ↑ 𝑘 )  ∈  ℤ ) | 
						
							| 83 | 73 | a1i | ⊢ ( ( ( 𝑝  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑚  ∈  ℕ )  ∧  𝑘  ∈  ( 0 ..^ 𝑝 ) )  →  - 1  ∈  ℤ ) | 
						
							| 84 |  | fzonnsub | ⊢ ( 𝑘  ∈  ( 0 ..^ 𝑝 )  →  ( 𝑝  −  𝑘 )  ∈  ℕ ) | 
						
							| 85 | 84 | adantl | ⊢ ( ( ( 𝑝  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑚  ∈  ℕ )  ∧  𝑘  ∈  ( 0 ..^ 𝑝 ) )  →  ( 𝑝  −  𝑘 )  ∈  ℕ ) | 
						
							| 86 |  | nnm1nn0 | ⊢ ( ( 𝑝  −  𝑘 )  ∈  ℕ  →  ( ( 𝑝  −  𝑘 )  −  1 )  ∈  ℕ0 ) | 
						
							| 87 | 85 86 | syl | ⊢ ( ( ( 𝑝  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑚  ∈  ℕ )  ∧  𝑘  ∈  ( 0 ..^ 𝑝 ) )  →  ( ( 𝑝  −  𝑘 )  −  1 )  ∈  ℕ0 ) | 
						
							| 88 |  | zexpcl | ⊢ ( ( - 1  ∈  ℤ  ∧  ( ( 𝑝  −  𝑘 )  −  1 )  ∈  ℕ0 )  →  ( - 1 ↑ ( ( 𝑝  −  𝑘 )  −  1 ) )  ∈  ℤ ) | 
						
							| 89 | 83 87 88 | syl2anc | ⊢ ( ( ( 𝑝  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑚  ∈  ℕ )  ∧  𝑘  ∈  ( 0 ..^ 𝑝 ) )  →  ( - 1 ↑ ( ( 𝑝  −  𝑘 )  −  1 ) )  ∈  ℤ ) | 
						
							| 90 | 82 89 | zmulcld | ⊢ ( ( ( 𝑝  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑚  ∈  ℕ )  ∧  𝑘  ∈  ( 0 ..^ 𝑝 ) )  →  ( ( ( 2 ↑ 𝑚 ) ↑ 𝑘 )  ·  ( - 1 ↑ ( ( 𝑝  −  𝑘 )  −  1 ) ) )  ∈  ℤ ) | 
						
							| 91 | 78 90 | fsumzcl | ⊢ ( ( 𝑝  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑚  ∈  ℕ )  →  Σ 𝑘  ∈  ( 0 ..^ 𝑝 ) ( ( ( 2 ↑ 𝑚 ) ↑ 𝑘 )  ·  ( - 1 ↑ ( ( 𝑝  −  𝑘 )  −  1 ) ) )  ∈  ℤ ) | 
						
							| 92 |  | dvdsmul1 | ⊢ ( ( ( ( 2 ↑ 𝑚 )  −  - 1 )  ∈  ℤ  ∧  Σ 𝑘  ∈  ( 0 ..^ 𝑝 ) ( ( ( 2 ↑ 𝑚 ) ↑ 𝑘 )  ·  ( - 1 ↑ ( ( 𝑝  −  𝑘 )  −  1 ) ) )  ∈  ℤ )  →  ( ( 2 ↑ 𝑚 )  −  - 1 )  ∥  ( ( ( 2 ↑ 𝑚 )  −  - 1 )  ·  Σ 𝑘  ∈  ( 0 ..^ 𝑝 ) ( ( ( 2 ↑ 𝑚 ) ↑ 𝑘 )  ·  ( - 1 ↑ ( ( 𝑝  −  𝑘 )  −  1 ) ) ) ) ) | 
						
							| 93 | 76 91 92 | syl2anc | ⊢ ( ( 𝑝  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑚  ∈  ℕ )  →  ( ( 2 ↑ 𝑚 )  −  - 1 )  ∥  ( ( ( 2 ↑ 𝑚 )  −  - 1 )  ·  Σ 𝑘  ∈  ( 0 ..^ 𝑝 ) ( ( ( 2 ↑ 𝑚 ) ↑ 𝑘 )  ·  ( - 1 ↑ ( ( 𝑝  −  𝑘 )  −  1 ) ) ) ) ) | 
						
							| 94 | 93 | ad2antlr | ⊢ ( ( ( 𝐾  ∈  ℕ  ∧  ( 𝑝  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑚  ∈  ℕ ) )  ∧  ( 𝑚  ·  𝑝 )  =  𝐾 )  →  ( ( 2 ↑ 𝑚 )  −  - 1 )  ∥  ( ( ( 2 ↑ 𝑚 )  −  - 1 )  ·  Σ 𝑘  ∈  ( 0 ..^ 𝑝 ) ( ( ( 2 ↑ 𝑚 ) ↑ 𝑘 )  ·  ( - 1 ↑ ( ( 𝑝  −  𝑘 )  −  1 ) ) ) ) ) | 
						
							| 95 | 23 | adantl | ⊢ ( ( 𝑝  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑚  ∈  ℕ )  →  ( 2 ↑ 𝑚 )  ∈  ℂ ) | 
						
							| 96 |  | neg1cn | ⊢ - 1  ∈  ℂ | 
						
							| 97 | 96 | a1i | ⊢ ( ( 𝑝  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑚  ∈  ℕ )  →  - 1  ∈  ℂ ) | 
						
							| 98 |  | pwdif | ⊢ ( ( 𝑝  ∈  ℕ0  ∧  ( 2 ↑ 𝑚 )  ∈  ℂ  ∧  - 1  ∈  ℂ )  →  ( ( ( 2 ↑ 𝑚 ) ↑ 𝑝 )  −  ( - 1 ↑ 𝑝 ) )  =  ( ( ( 2 ↑ 𝑚 )  −  - 1 )  ·  Σ 𝑘  ∈  ( 0 ..^ 𝑝 ) ( ( ( 2 ↑ 𝑚 ) ↑ 𝑘 )  ·  ( - 1 ↑ ( ( 𝑝  −  𝑘 )  −  1 ) ) ) ) ) | 
						
							| 99 | 36 95 97 98 | syl3anc | ⊢ ( ( 𝑝  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑚  ∈  ℕ )  →  ( ( ( 2 ↑ 𝑚 ) ↑ 𝑝 )  −  ( - 1 ↑ 𝑝 ) )  =  ( ( ( 2 ↑ 𝑚 )  −  - 1 )  ·  Σ 𝑘  ∈  ( 0 ..^ 𝑝 ) ( ( ( 2 ↑ 𝑚 ) ↑ 𝑘 )  ·  ( - 1 ↑ ( ( 𝑝  −  𝑘 )  −  1 ) ) ) ) ) | 
						
							| 100 | 99 | breq2d | ⊢ ( ( 𝑝  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑚  ∈  ℕ )  →  ( ( ( 2 ↑ 𝑚 )  −  - 1 )  ∥  ( ( ( 2 ↑ 𝑚 ) ↑ 𝑝 )  −  ( - 1 ↑ 𝑝 ) )  ↔  ( ( 2 ↑ 𝑚 )  −  - 1 )  ∥  ( ( ( 2 ↑ 𝑚 )  −  - 1 )  ·  Σ 𝑘  ∈  ( 0 ..^ 𝑝 ) ( ( ( 2 ↑ 𝑚 ) ↑ 𝑘 )  ·  ( - 1 ↑ ( ( 𝑝  −  𝑘 )  −  1 ) ) ) ) ) ) | 
						
							| 101 | 100 | ad2antlr | ⊢ ( ( ( 𝐾  ∈  ℕ  ∧  ( 𝑝  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑚  ∈  ℕ ) )  ∧  ( 𝑚  ·  𝑝 )  =  𝐾 )  →  ( ( ( 2 ↑ 𝑚 )  −  - 1 )  ∥  ( ( ( 2 ↑ 𝑚 ) ↑ 𝑝 )  −  ( - 1 ↑ 𝑝 ) )  ↔  ( ( 2 ↑ 𝑚 )  −  - 1 )  ∥  ( ( ( 2 ↑ 𝑚 )  −  - 1 )  ·  Σ 𝑘  ∈  ( 0 ..^ 𝑝 ) ( ( ( 2 ↑ 𝑚 ) ↑ 𝑘 )  ·  ( - 1 ↑ ( ( 𝑝  −  𝑘 )  −  1 ) ) ) ) ) ) | 
						
							| 102 | 94 101 | mpbird | ⊢ ( ( ( 𝐾  ∈  ℕ  ∧  ( 𝑝  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑚  ∈  ℕ ) )  ∧  ( 𝑚  ·  𝑝 )  =  𝐾 )  →  ( ( 2 ↑ 𝑚 )  −  - 1 )  ∥  ( ( ( 2 ↑ 𝑚 ) ↑ 𝑝 )  −  ( - 1 ↑ 𝑝 ) ) ) | 
						
							| 103 |  | 2cnd | ⊢ ( 𝐾  ∈  ℕ  →  2  ∈  ℂ ) | 
						
							| 104 |  | nnnn0 | ⊢ ( 𝐾  ∈  ℕ  →  𝐾  ∈  ℕ0 ) | 
						
							| 105 | 103 104 | expcld | ⊢ ( 𝐾  ∈  ℕ  →  ( 2 ↑ 𝐾 )  ∈  ℂ ) | 
						
							| 106 |  | 1cnd | ⊢ ( 𝐾  ∈  ℕ  →  1  ∈  ℂ ) | 
						
							| 107 | 105 106 | subnegd | ⊢ ( 𝐾  ∈  ℕ  →  ( ( 2 ↑ 𝐾 )  −  - 1 )  =  ( ( 2 ↑ 𝐾 )  +  1 ) ) | 
						
							| 108 | 107 | eqcomd | ⊢ ( 𝐾  ∈  ℕ  →  ( ( 2 ↑ 𝐾 )  +  1 )  =  ( ( 2 ↑ 𝐾 )  −  - 1 ) ) | 
						
							| 109 | 108 | adantr | ⊢ ( ( 𝐾  ∈  ℕ  ∧  ( 𝑝  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑚  ∈  ℕ ) )  →  ( ( 2 ↑ 𝐾 )  +  1 )  =  ( ( 2 ↑ 𝐾 )  −  - 1 ) ) | 
						
							| 110 | 109 | adantr | ⊢ ( ( ( 𝐾  ∈  ℕ  ∧  ( 𝑝  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑚  ∈  ℕ ) )  ∧  ( 𝑚  ·  𝑝 )  =  𝐾 )  →  ( ( 2 ↑ 𝐾 )  +  1 )  =  ( ( 2 ↑ 𝐾 )  −  - 1 ) ) | 
						
							| 111 |  | oveq2 | ⊢ ( 𝐾  =  ( 𝑚  ·  𝑝 )  →  ( 2 ↑ 𝐾 )  =  ( 2 ↑ ( 𝑚  ·  𝑝 ) ) ) | 
						
							| 112 | 111 | eqcoms | ⊢ ( ( 𝑚  ·  𝑝 )  =  𝐾  →  ( 2 ↑ 𝐾 )  =  ( 2 ↑ ( 𝑚  ·  𝑝 ) ) ) | 
						
							| 113 | 112 | adantl | ⊢ ( ( ( 𝐾  ∈  ℕ  ∧  ( 𝑝  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑚  ∈  ℕ ) )  ∧  ( 𝑚  ·  𝑝 )  =  𝐾 )  →  ( 2 ↑ 𝐾 )  =  ( 2 ↑ ( 𝑚  ·  𝑝 ) ) ) | 
						
							| 114 |  | 2cnd | ⊢ ( ( 𝑝  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑚  ∈  ℕ )  →  2  ∈  ℂ ) | 
						
							| 115 | 114 36 34 | expmuld | ⊢ ( ( 𝑝  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑚  ∈  ℕ )  →  ( 2 ↑ ( 𝑚  ·  𝑝 ) )  =  ( ( 2 ↑ 𝑚 ) ↑ 𝑝 ) ) | 
						
							| 116 | 115 | ad2antlr | ⊢ ( ( ( 𝐾  ∈  ℕ  ∧  ( 𝑝  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑚  ∈  ℕ ) )  ∧  ( 𝑚  ·  𝑝 )  =  𝐾 )  →  ( 2 ↑ ( 𝑚  ·  𝑝 ) )  =  ( ( 2 ↑ 𝑚 ) ↑ 𝑝 ) ) | 
						
							| 117 | 113 116 | eqtrd | ⊢ ( ( ( 𝐾  ∈  ℕ  ∧  ( 𝑝  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑚  ∈  ℕ ) )  ∧  ( 𝑚  ·  𝑝 )  =  𝐾 )  →  ( 2 ↑ 𝐾 )  =  ( ( 2 ↑ 𝑚 ) ↑ 𝑝 ) ) | 
						
							| 118 |  | 1exp | ⊢ ( 𝑝  ∈  ℤ  →  ( 1 ↑ 𝑝 )  =  1 ) | 
						
							| 119 | 44 118 | syl | ⊢ ( 𝑝  ∈  ( ℙ  ∖  { 2 } )  →  ( 1 ↑ 𝑝 )  =  1 ) | 
						
							| 120 | 119 | eqcomd | ⊢ ( 𝑝  ∈  ( ℙ  ∖  { 2 } )  →  1  =  ( 1 ↑ 𝑝 ) ) | 
						
							| 121 | 120 | negeqd | ⊢ ( 𝑝  ∈  ( ℙ  ∖  { 2 } )  →  - 1  =  - ( 1 ↑ 𝑝 ) ) | 
						
							| 122 |  | 1cnd | ⊢ ( 𝑝  ∈  ( ℙ  ∖  { 2 } )  →  1  ∈  ℂ ) | 
						
							| 123 |  | oddn2prm | ⊢ ( 𝑝  ∈  ( ℙ  ∖  { 2 } )  →  ¬  2  ∥  𝑝 ) | 
						
							| 124 |  | oexpneg | ⊢ ( ( 1  ∈  ℂ  ∧  𝑝  ∈  ℕ  ∧  ¬  2  ∥  𝑝 )  →  ( - 1 ↑ 𝑝 )  =  - ( 1 ↑ 𝑝 ) ) | 
						
							| 125 | 122 5 123 124 | syl3anc | ⊢ ( 𝑝  ∈  ( ℙ  ∖  { 2 } )  →  ( - 1 ↑ 𝑝 )  =  - ( 1 ↑ 𝑝 ) ) | 
						
							| 126 | 125 | eqcomd | ⊢ ( 𝑝  ∈  ( ℙ  ∖  { 2 } )  →  - ( 1 ↑ 𝑝 )  =  ( - 1 ↑ 𝑝 ) ) | 
						
							| 127 | 121 126 | eqtrd | ⊢ ( 𝑝  ∈  ( ℙ  ∖  { 2 } )  →  - 1  =  ( - 1 ↑ 𝑝 ) ) | 
						
							| 128 | 127 | adantr | ⊢ ( ( 𝑝  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑚  ∈  ℕ )  →  - 1  =  ( - 1 ↑ 𝑝 ) ) | 
						
							| 129 | 128 | ad2antlr | ⊢ ( ( ( 𝐾  ∈  ℕ  ∧  ( 𝑝  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑚  ∈  ℕ ) )  ∧  ( 𝑚  ·  𝑝 )  =  𝐾 )  →  - 1  =  ( - 1 ↑ 𝑝 ) ) | 
						
							| 130 | 117 129 | oveq12d | ⊢ ( ( ( 𝐾  ∈  ℕ  ∧  ( 𝑝  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑚  ∈  ℕ ) )  ∧  ( 𝑚  ·  𝑝 )  =  𝐾 )  →  ( ( 2 ↑ 𝐾 )  −  - 1 )  =  ( ( ( 2 ↑ 𝑚 ) ↑ 𝑝 )  −  ( - 1 ↑ 𝑝 ) ) ) | 
						
							| 131 | 110 130 | eqtrd | ⊢ ( ( ( 𝐾  ∈  ℕ  ∧  ( 𝑝  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑚  ∈  ℕ ) )  ∧  ( 𝑚  ·  𝑝 )  =  𝐾 )  →  ( ( 2 ↑ 𝐾 )  +  1 )  =  ( ( ( 2 ↑ 𝑚 ) ↑ 𝑝 )  −  ( - 1 ↑ 𝑝 ) ) ) | 
						
							| 132 | 131 | breq2d | ⊢ ( ( ( 𝐾  ∈  ℕ  ∧  ( 𝑝  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑚  ∈  ℕ ) )  ∧  ( 𝑚  ·  𝑝 )  =  𝐾 )  →  ( ( ( 2 ↑ 𝑚 )  −  - 1 )  ∥  ( ( 2 ↑ 𝐾 )  +  1 )  ↔  ( ( 2 ↑ 𝑚 )  −  - 1 )  ∥  ( ( ( 2 ↑ 𝑚 ) ↑ 𝑝 )  −  ( - 1 ↑ 𝑝 ) ) ) ) | 
						
							| 133 | 102 132 | mpbird | ⊢ ( ( ( 𝐾  ∈  ℕ  ∧  ( 𝑝  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑚  ∈  ℕ ) )  ∧  ( 𝑚  ·  𝑝 )  =  𝐾 )  →  ( ( 2 ↑ 𝑚 )  −  - 1 )  ∥  ( ( 2 ↑ 𝐾 )  +  1 ) ) | 
						
							| 134 | 30 72 133 | dvdsnprmd | ⊢ ( ( ( 𝐾  ∈  ℕ  ∧  ( 𝑝  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑚  ∈  ℕ ) )  ∧  ( 𝑚  ·  𝑝 )  =  𝐾 )  →  ¬  ( ( 2 ↑ 𝐾 )  +  1 )  ∈  ℙ ) | 
						
							| 135 | 134 | pm2.21d | ⊢ ( ( ( 𝐾  ∈  ℕ  ∧  ( 𝑝  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑚  ∈  ℕ ) )  ∧  ( 𝑚  ·  𝑝 )  =  𝐾 )  →  ( ( ( 2 ↑ 𝐾 )  +  1 )  ∈  ℙ  →  ∃ 𝑛  ∈  ℕ0 𝐾  =  ( 2 ↑ 𝑛 ) ) ) | 
						
							| 136 | 135 | ex | ⊢ ( ( 𝐾  ∈  ℕ  ∧  ( 𝑝  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑚  ∈  ℕ ) )  →  ( ( 𝑚  ·  𝑝 )  =  𝐾  →  ( ( ( 2 ↑ 𝐾 )  +  1 )  ∈  ℙ  →  ∃ 𝑛  ∈  ℕ0 𝐾  =  ( 2 ↑ 𝑛 ) ) ) ) | 
						
							| 137 | 136 | com23 | ⊢ ( ( 𝐾  ∈  ℕ  ∧  ( 𝑝  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑚  ∈  ℕ ) )  →  ( ( ( 2 ↑ 𝐾 )  +  1 )  ∈  ℙ  →  ( ( 𝑚  ·  𝑝 )  =  𝐾  →  ∃ 𝑛  ∈  ℕ0 𝐾  =  ( 2 ↑ 𝑛 ) ) ) ) | 
						
							| 138 | 137 | impancom | ⊢ ( ( 𝐾  ∈  ℕ  ∧  ( ( 2 ↑ 𝐾 )  +  1 )  ∈  ℙ )  →  ( ( 𝑝  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑚  ∈  ℕ )  →  ( ( 𝑚  ·  𝑝 )  =  𝐾  →  ∃ 𝑛  ∈  ℕ0 𝐾  =  ( 2 ↑ 𝑛 ) ) ) ) | 
						
							| 139 | 138 | impl | ⊢ ( ( ( ( 𝐾  ∈  ℕ  ∧  ( ( 2 ↑ 𝐾 )  +  1 )  ∈  ℙ )  ∧  𝑝  ∈  ( ℙ  ∖  { 2 } ) )  ∧  𝑚  ∈  ℕ )  →  ( ( 𝑚  ·  𝑝 )  =  𝐾  →  ∃ 𝑛  ∈  ℕ0 𝐾  =  ( 2 ↑ 𝑛 ) ) ) | 
						
							| 140 | 139 | rexlimdva | ⊢ ( ( ( 𝐾  ∈  ℕ  ∧  ( ( 2 ↑ 𝐾 )  +  1 )  ∈  ℙ )  ∧  𝑝  ∈  ( ℙ  ∖  { 2 } ) )  →  ( ∃ 𝑚  ∈  ℕ ( 𝑚  ·  𝑝 )  =  𝐾  →  ∃ 𝑛  ∈  ℕ0 𝐾  =  ( 2 ↑ 𝑛 ) ) ) | 
						
							| 141 | 8 140 | sylbid | ⊢ ( ( ( 𝐾  ∈  ℕ  ∧  ( ( 2 ↑ 𝐾 )  +  1 )  ∈  ℙ )  ∧  𝑝  ∈  ( ℙ  ∖  { 2 } ) )  →  ( 𝑝  ∥  𝐾  →  ∃ 𝑛  ∈  ℕ0 𝐾  =  ( 2 ↑ 𝑛 ) ) ) | 
						
							| 142 | 141 | rexlimdva | ⊢ ( ( 𝐾  ∈  ℕ  ∧  ( ( 2 ↑ 𝐾 )  +  1 )  ∈  ℙ )  →  ( ∃ 𝑝  ∈  ( ℙ  ∖  { 2 } ) 𝑝  ∥  𝐾  →  ∃ 𝑛  ∈  ℕ0 𝐾  =  ( 2 ↑ 𝑛 ) ) ) | 
						
							| 143 | 142 | adantr | ⊢ ( ( ( 𝐾  ∈  ℕ  ∧  ( ( 2 ↑ 𝐾 )  +  1 )  ∈  ℙ )  ∧  ¬  ∃ 𝑛  ∈  ℕ0 𝐾  =  ( 2 ↑ 𝑛 ) )  →  ( ∃ 𝑝  ∈  ( ℙ  ∖  { 2 } ) 𝑝  ∥  𝐾  →  ∃ 𝑛  ∈  ℕ0 𝐾  =  ( 2 ↑ 𝑛 ) ) ) | 
						
							| 144 | 2 143 | mpd | ⊢ ( ( ( 𝐾  ∈  ℕ  ∧  ( ( 2 ↑ 𝐾 )  +  1 )  ∈  ℙ )  ∧  ¬  ∃ 𝑛  ∈  ℕ0 𝐾  =  ( 2 ↑ 𝑛 ) )  →  ∃ 𝑛  ∈  ℕ0 𝐾  =  ( 2 ↑ 𝑛 ) ) | 
						
							| 145 | 144 | pm2.18da | ⊢ ( ( 𝐾  ∈  ℕ  ∧  ( ( 2 ↑ 𝐾 )  +  1 )  ∈  ℙ )  →  ∃ 𝑛  ∈  ℕ0 𝐾  =  ( 2 ↑ 𝑛 ) ) |