| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simp1 | ⊢ ( ( 𝐾  ∈  ℕ  ∧  𝑃  =  ( ( 2 ↑ 𝐾 )  +  1 )  ∧  𝑃  ∈  ℙ )  →  𝐾  ∈  ℕ ) | 
						
							| 2 |  | eleq1 | ⊢ ( 𝑃  =  ( ( 2 ↑ 𝐾 )  +  1 )  →  ( 𝑃  ∈  ℙ  ↔  ( ( 2 ↑ 𝐾 )  +  1 )  ∈  ℙ ) ) | 
						
							| 3 | 2 | biimpa | ⊢ ( ( 𝑃  =  ( ( 2 ↑ 𝐾 )  +  1 )  ∧  𝑃  ∈  ℙ )  →  ( ( 2 ↑ 𝐾 )  +  1 )  ∈  ℙ ) | 
						
							| 4 | 3 | 3adant1 | ⊢ ( ( 𝐾  ∈  ℕ  ∧  𝑃  =  ( ( 2 ↑ 𝐾 )  +  1 )  ∧  𝑃  ∈  ℙ )  →  ( ( 2 ↑ 𝐾 )  +  1 )  ∈  ℙ ) | 
						
							| 5 |  | 2pwp1prm | ⊢ ( ( 𝐾  ∈  ℕ  ∧  ( ( 2 ↑ 𝐾 )  +  1 )  ∈  ℙ )  →  ∃ 𝑛  ∈  ℕ0 𝐾  =  ( 2 ↑ 𝑛 ) ) | 
						
							| 6 | 1 4 5 | syl2anc | ⊢ ( ( 𝐾  ∈  ℕ  ∧  𝑃  =  ( ( 2 ↑ 𝐾 )  +  1 )  ∧  𝑃  ∈  ℙ )  →  ∃ 𝑛  ∈  ℕ0 𝐾  =  ( 2 ↑ 𝑛 ) ) | 
						
							| 7 |  | simpl | ⊢ ( ( 𝑃  =  ( ( 2 ↑ 𝐾 )  +  1 )  ∧  𝐾  =  ( 2 ↑ 𝑛 ) )  →  𝑃  =  ( ( 2 ↑ 𝐾 )  +  1 ) ) | 
						
							| 8 |  | oveq2 | ⊢ ( 𝐾  =  ( 2 ↑ 𝑛 )  →  ( 2 ↑ 𝐾 )  =  ( 2 ↑ ( 2 ↑ 𝑛 ) ) ) | 
						
							| 9 | 8 | oveq1d | ⊢ ( 𝐾  =  ( 2 ↑ 𝑛 )  →  ( ( 2 ↑ 𝐾 )  +  1 )  =  ( ( 2 ↑ ( 2 ↑ 𝑛 ) )  +  1 ) ) | 
						
							| 10 | 9 | adantl | ⊢ ( ( 𝑃  =  ( ( 2 ↑ 𝐾 )  +  1 )  ∧  𝐾  =  ( 2 ↑ 𝑛 ) )  →  ( ( 2 ↑ 𝐾 )  +  1 )  =  ( ( 2 ↑ ( 2 ↑ 𝑛 ) )  +  1 ) ) | 
						
							| 11 | 7 10 | eqtrd | ⊢ ( ( 𝑃  =  ( ( 2 ↑ 𝐾 )  +  1 )  ∧  𝐾  =  ( 2 ↑ 𝑛 ) )  →  𝑃  =  ( ( 2 ↑ ( 2 ↑ 𝑛 ) )  +  1 ) ) | 
						
							| 12 |  | fmtno | ⊢ ( 𝑛  ∈  ℕ0  →  ( FermatNo ‘ 𝑛 )  =  ( ( 2 ↑ ( 2 ↑ 𝑛 ) )  +  1 ) ) | 
						
							| 13 | 12 | eqcomd | ⊢ ( 𝑛  ∈  ℕ0  →  ( ( 2 ↑ ( 2 ↑ 𝑛 ) )  +  1 )  =  ( FermatNo ‘ 𝑛 ) ) | 
						
							| 14 | 11 13 | sylan9eqr | ⊢ ( ( 𝑛  ∈  ℕ0  ∧  ( 𝑃  =  ( ( 2 ↑ 𝐾 )  +  1 )  ∧  𝐾  =  ( 2 ↑ 𝑛 ) ) )  →  𝑃  =  ( FermatNo ‘ 𝑛 ) ) | 
						
							| 15 | 14 | exp32 | ⊢ ( 𝑛  ∈  ℕ0  →  ( 𝑃  =  ( ( 2 ↑ 𝐾 )  +  1 )  →  ( 𝐾  =  ( 2 ↑ 𝑛 )  →  𝑃  =  ( FermatNo ‘ 𝑛 ) ) ) ) | 
						
							| 16 | 15 | com12 | ⊢ ( 𝑃  =  ( ( 2 ↑ 𝐾 )  +  1 )  →  ( 𝑛  ∈  ℕ0  →  ( 𝐾  =  ( 2 ↑ 𝑛 )  →  𝑃  =  ( FermatNo ‘ 𝑛 ) ) ) ) | 
						
							| 17 | 16 | 3ad2ant2 | ⊢ ( ( 𝐾  ∈  ℕ  ∧  𝑃  =  ( ( 2 ↑ 𝐾 )  +  1 )  ∧  𝑃  ∈  ℙ )  →  ( 𝑛  ∈  ℕ0  →  ( 𝐾  =  ( 2 ↑ 𝑛 )  →  𝑃  =  ( FermatNo ‘ 𝑛 ) ) ) ) | 
						
							| 18 | 17 | imp | ⊢ ( ( ( 𝐾  ∈  ℕ  ∧  𝑃  =  ( ( 2 ↑ 𝐾 )  +  1 )  ∧  𝑃  ∈  ℙ )  ∧  𝑛  ∈  ℕ0 )  →  ( 𝐾  =  ( 2 ↑ 𝑛 )  →  𝑃  =  ( FermatNo ‘ 𝑛 ) ) ) | 
						
							| 19 | 18 | reximdva | ⊢ ( ( 𝐾  ∈  ℕ  ∧  𝑃  =  ( ( 2 ↑ 𝐾 )  +  1 )  ∧  𝑃  ∈  ℙ )  →  ( ∃ 𝑛  ∈  ℕ0 𝐾  =  ( 2 ↑ 𝑛 )  →  ∃ 𝑛  ∈  ℕ0 𝑃  =  ( FermatNo ‘ 𝑛 ) ) ) | 
						
							| 20 | 6 19 | mpd | ⊢ ( ( 𝐾  ∈  ℕ  ∧  𝑃  =  ( ( 2 ↑ 𝐾 )  +  1 )  ∧  𝑃  ∈  ℙ )  →  ∃ 𝑛  ∈  ℕ0 𝑃  =  ( FermatNo ‘ 𝑛 ) ) |