Step |
Hyp |
Ref |
Expression |
1 |
|
simp1 |
⊢ ( ( 𝐾 ∈ ℕ ∧ 𝑃 = ( ( 2 ↑ 𝐾 ) + 1 ) ∧ 𝑃 ∈ ℙ ) → 𝐾 ∈ ℕ ) |
2 |
|
eleq1 |
⊢ ( 𝑃 = ( ( 2 ↑ 𝐾 ) + 1 ) → ( 𝑃 ∈ ℙ ↔ ( ( 2 ↑ 𝐾 ) + 1 ) ∈ ℙ ) ) |
3 |
2
|
biimpa |
⊢ ( ( 𝑃 = ( ( 2 ↑ 𝐾 ) + 1 ) ∧ 𝑃 ∈ ℙ ) → ( ( 2 ↑ 𝐾 ) + 1 ) ∈ ℙ ) |
4 |
3
|
3adant1 |
⊢ ( ( 𝐾 ∈ ℕ ∧ 𝑃 = ( ( 2 ↑ 𝐾 ) + 1 ) ∧ 𝑃 ∈ ℙ ) → ( ( 2 ↑ 𝐾 ) + 1 ) ∈ ℙ ) |
5 |
|
2pwp1prm |
⊢ ( ( 𝐾 ∈ ℕ ∧ ( ( 2 ↑ 𝐾 ) + 1 ) ∈ ℙ ) → ∃ 𝑛 ∈ ℕ0 𝐾 = ( 2 ↑ 𝑛 ) ) |
6 |
1 4 5
|
syl2anc |
⊢ ( ( 𝐾 ∈ ℕ ∧ 𝑃 = ( ( 2 ↑ 𝐾 ) + 1 ) ∧ 𝑃 ∈ ℙ ) → ∃ 𝑛 ∈ ℕ0 𝐾 = ( 2 ↑ 𝑛 ) ) |
7 |
|
simpl |
⊢ ( ( 𝑃 = ( ( 2 ↑ 𝐾 ) + 1 ) ∧ 𝐾 = ( 2 ↑ 𝑛 ) ) → 𝑃 = ( ( 2 ↑ 𝐾 ) + 1 ) ) |
8 |
|
oveq2 |
⊢ ( 𝐾 = ( 2 ↑ 𝑛 ) → ( 2 ↑ 𝐾 ) = ( 2 ↑ ( 2 ↑ 𝑛 ) ) ) |
9 |
8
|
oveq1d |
⊢ ( 𝐾 = ( 2 ↑ 𝑛 ) → ( ( 2 ↑ 𝐾 ) + 1 ) = ( ( 2 ↑ ( 2 ↑ 𝑛 ) ) + 1 ) ) |
10 |
9
|
adantl |
⊢ ( ( 𝑃 = ( ( 2 ↑ 𝐾 ) + 1 ) ∧ 𝐾 = ( 2 ↑ 𝑛 ) ) → ( ( 2 ↑ 𝐾 ) + 1 ) = ( ( 2 ↑ ( 2 ↑ 𝑛 ) ) + 1 ) ) |
11 |
7 10
|
eqtrd |
⊢ ( ( 𝑃 = ( ( 2 ↑ 𝐾 ) + 1 ) ∧ 𝐾 = ( 2 ↑ 𝑛 ) ) → 𝑃 = ( ( 2 ↑ ( 2 ↑ 𝑛 ) ) + 1 ) ) |
12 |
|
fmtno |
⊢ ( 𝑛 ∈ ℕ0 → ( FermatNo ‘ 𝑛 ) = ( ( 2 ↑ ( 2 ↑ 𝑛 ) ) + 1 ) ) |
13 |
12
|
eqcomd |
⊢ ( 𝑛 ∈ ℕ0 → ( ( 2 ↑ ( 2 ↑ 𝑛 ) ) + 1 ) = ( FermatNo ‘ 𝑛 ) ) |
14 |
11 13
|
sylan9eqr |
⊢ ( ( 𝑛 ∈ ℕ0 ∧ ( 𝑃 = ( ( 2 ↑ 𝐾 ) + 1 ) ∧ 𝐾 = ( 2 ↑ 𝑛 ) ) ) → 𝑃 = ( FermatNo ‘ 𝑛 ) ) |
15 |
14
|
exp32 |
⊢ ( 𝑛 ∈ ℕ0 → ( 𝑃 = ( ( 2 ↑ 𝐾 ) + 1 ) → ( 𝐾 = ( 2 ↑ 𝑛 ) → 𝑃 = ( FermatNo ‘ 𝑛 ) ) ) ) |
16 |
15
|
com12 |
⊢ ( 𝑃 = ( ( 2 ↑ 𝐾 ) + 1 ) → ( 𝑛 ∈ ℕ0 → ( 𝐾 = ( 2 ↑ 𝑛 ) → 𝑃 = ( FermatNo ‘ 𝑛 ) ) ) ) |
17 |
16
|
3ad2ant2 |
⊢ ( ( 𝐾 ∈ ℕ ∧ 𝑃 = ( ( 2 ↑ 𝐾 ) + 1 ) ∧ 𝑃 ∈ ℙ ) → ( 𝑛 ∈ ℕ0 → ( 𝐾 = ( 2 ↑ 𝑛 ) → 𝑃 = ( FermatNo ‘ 𝑛 ) ) ) ) |
18 |
17
|
imp |
⊢ ( ( ( 𝐾 ∈ ℕ ∧ 𝑃 = ( ( 2 ↑ 𝐾 ) + 1 ) ∧ 𝑃 ∈ ℙ ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝐾 = ( 2 ↑ 𝑛 ) → 𝑃 = ( FermatNo ‘ 𝑛 ) ) ) |
19 |
18
|
reximdva |
⊢ ( ( 𝐾 ∈ ℕ ∧ 𝑃 = ( ( 2 ↑ 𝐾 ) + 1 ) ∧ 𝑃 ∈ ℙ ) → ( ∃ 𝑛 ∈ ℕ0 𝐾 = ( 2 ↑ 𝑛 ) → ∃ 𝑛 ∈ ℕ0 𝑃 = ( FermatNo ‘ 𝑛 ) ) ) |
20 |
6 19
|
mpd |
⊢ ( ( 𝐾 ∈ ℕ ∧ 𝑃 = ( ( 2 ↑ 𝐾 ) + 1 ) ∧ 𝑃 ∈ ℙ ) → ∃ 𝑛 ∈ ℕ0 𝑃 = ( FermatNo ‘ 𝑛 ) ) |