Step |
Hyp |
Ref |
Expression |
1 |
|
simp1 |
|- ( ( K e. NN /\ P = ( ( 2 ^ K ) + 1 ) /\ P e. Prime ) -> K e. NN ) |
2 |
|
eleq1 |
|- ( P = ( ( 2 ^ K ) + 1 ) -> ( P e. Prime <-> ( ( 2 ^ K ) + 1 ) e. Prime ) ) |
3 |
2
|
biimpa |
|- ( ( P = ( ( 2 ^ K ) + 1 ) /\ P e. Prime ) -> ( ( 2 ^ K ) + 1 ) e. Prime ) |
4 |
3
|
3adant1 |
|- ( ( K e. NN /\ P = ( ( 2 ^ K ) + 1 ) /\ P e. Prime ) -> ( ( 2 ^ K ) + 1 ) e. Prime ) |
5 |
|
2pwp1prm |
|- ( ( K e. NN /\ ( ( 2 ^ K ) + 1 ) e. Prime ) -> E. n e. NN0 K = ( 2 ^ n ) ) |
6 |
1 4 5
|
syl2anc |
|- ( ( K e. NN /\ P = ( ( 2 ^ K ) + 1 ) /\ P e. Prime ) -> E. n e. NN0 K = ( 2 ^ n ) ) |
7 |
|
simpl |
|- ( ( P = ( ( 2 ^ K ) + 1 ) /\ K = ( 2 ^ n ) ) -> P = ( ( 2 ^ K ) + 1 ) ) |
8 |
|
oveq2 |
|- ( K = ( 2 ^ n ) -> ( 2 ^ K ) = ( 2 ^ ( 2 ^ n ) ) ) |
9 |
8
|
oveq1d |
|- ( K = ( 2 ^ n ) -> ( ( 2 ^ K ) + 1 ) = ( ( 2 ^ ( 2 ^ n ) ) + 1 ) ) |
10 |
9
|
adantl |
|- ( ( P = ( ( 2 ^ K ) + 1 ) /\ K = ( 2 ^ n ) ) -> ( ( 2 ^ K ) + 1 ) = ( ( 2 ^ ( 2 ^ n ) ) + 1 ) ) |
11 |
7 10
|
eqtrd |
|- ( ( P = ( ( 2 ^ K ) + 1 ) /\ K = ( 2 ^ n ) ) -> P = ( ( 2 ^ ( 2 ^ n ) ) + 1 ) ) |
12 |
|
fmtno |
|- ( n e. NN0 -> ( FermatNo ` n ) = ( ( 2 ^ ( 2 ^ n ) ) + 1 ) ) |
13 |
12
|
eqcomd |
|- ( n e. NN0 -> ( ( 2 ^ ( 2 ^ n ) ) + 1 ) = ( FermatNo ` n ) ) |
14 |
11 13
|
sylan9eqr |
|- ( ( n e. NN0 /\ ( P = ( ( 2 ^ K ) + 1 ) /\ K = ( 2 ^ n ) ) ) -> P = ( FermatNo ` n ) ) |
15 |
14
|
exp32 |
|- ( n e. NN0 -> ( P = ( ( 2 ^ K ) + 1 ) -> ( K = ( 2 ^ n ) -> P = ( FermatNo ` n ) ) ) ) |
16 |
15
|
com12 |
|- ( P = ( ( 2 ^ K ) + 1 ) -> ( n e. NN0 -> ( K = ( 2 ^ n ) -> P = ( FermatNo ` n ) ) ) ) |
17 |
16
|
3ad2ant2 |
|- ( ( K e. NN /\ P = ( ( 2 ^ K ) + 1 ) /\ P e. Prime ) -> ( n e. NN0 -> ( K = ( 2 ^ n ) -> P = ( FermatNo ` n ) ) ) ) |
18 |
17
|
imp |
|- ( ( ( K e. NN /\ P = ( ( 2 ^ K ) + 1 ) /\ P e. Prime ) /\ n e. NN0 ) -> ( K = ( 2 ^ n ) -> P = ( FermatNo ` n ) ) ) |
19 |
18
|
reximdva |
|- ( ( K e. NN /\ P = ( ( 2 ^ K ) + 1 ) /\ P e. Prime ) -> ( E. n e. NN0 K = ( 2 ^ n ) -> E. n e. NN0 P = ( FermatNo ` n ) ) ) |
20 |
6 19
|
mpd |
|- ( ( K e. NN /\ P = ( ( 2 ^ K ) + 1 ) /\ P e. Prime ) -> E. n e. NN0 P = ( FermatNo ` n ) ) |