| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simp1 |  |-  ( ( K e. NN /\ P = ( ( 2 ^ K ) + 1 ) /\ P e. Prime ) -> K e. NN ) | 
						
							| 2 |  | eleq1 |  |-  ( P = ( ( 2 ^ K ) + 1 ) -> ( P e. Prime <-> ( ( 2 ^ K ) + 1 ) e. Prime ) ) | 
						
							| 3 | 2 | biimpa |  |-  ( ( P = ( ( 2 ^ K ) + 1 ) /\ P e. Prime ) -> ( ( 2 ^ K ) + 1 ) e. Prime ) | 
						
							| 4 | 3 | 3adant1 |  |-  ( ( K e. NN /\ P = ( ( 2 ^ K ) + 1 ) /\ P e. Prime ) -> ( ( 2 ^ K ) + 1 ) e. Prime ) | 
						
							| 5 |  | 2pwp1prm |  |-  ( ( K e. NN /\ ( ( 2 ^ K ) + 1 ) e. Prime ) -> E. n e. NN0 K = ( 2 ^ n ) ) | 
						
							| 6 | 1 4 5 | syl2anc |  |-  ( ( K e. NN /\ P = ( ( 2 ^ K ) + 1 ) /\ P e. Prime ) -> E. n e. NN0 K = ( 2 ^ n ) ) | 
						
							| 7 |  | simpl |  |-  ( ( P = ( ( 2 ^ K ) + 1 ) /\ K = ( 2 ^ n ) ) -> P = ( ( 2 ^ K ) + 1 ) ) | 
						
							| 8 |  | oveq2 |  |-  ( K = ( 2 ^ n ) -> ( 2 ^ K ) = ( 2 ^ ( 2 ^ n ) ) ) | 
						
							| 9 | 8 | oveq1d |  |-  ( K = ( 2 ^ n ) -> ( ( 2 ^ K ) + 1 ) = ( ( 2 ^ ( 2 ^ n ) ) + 1 ) ) | 
						
							| 10 | 9 | adantl |  |-  ( ( P = ( ( 2 ^ K ) + 1 ) /\ K = ( 2 ^ n ) ) -> ( ( 2 ^ K ) + 1 ) = ( ( 2 ^ ( 2 ^ n ) ) + 1 ) ) | 
						
							| 11 | 7 10 | eqtrd |  |-  ( ( P = ( ( 2 ^ K ) + 1 ) /\ K = ( 2 ^ n ) ) -> P = ( ( 2 ^ ( 2 ^ n ) ) + 1 ) ) | 
						
							| 12 |  | fmtno |  |-  ( n e. NN0 -> ( FermatNo ` n ) = ( ( 2 ^ ( 2 ^ n ) ) + 1 ) ) | 
						
							| 13 | 12 | eqcomd |  |-  ( n e. NN0 -> ( ( 2 ^ ( 2 ^ n ) ) + 1 ) = ( FermatNo ` n ) ) | 
						
							| 14 | 11 13 | sylan9eqr |  |-  ( ( n e. NN0 /\ ( P = ( ( 2 ^ K ) + 1 ) /\ K = ( 2 ^ n ) ) ) -> P = ( FermatNo ` n ) ) | 
						
							| 15 | 14 | exp32 |  |-  ( n e. NN0 -> ( P = ( ( 2 ^ K ) + 1 ) -> ( K = ( 2 ^ n ) -> P = ( FermatNo ` n ) ) ) ) | 
						
							| 16 | 15 | com12 |  |-  ( P = ( ( 2 ^ K ) + 1 ) -> ( n e. NN0 -> ( K = ( 2 ^ n ) -> P = ( FermatNo ` n ) ) ) ) | 
						
							| 17 | 16 | 3ad2ant2 |  |-  ( ( K e. NN /\ P = ( ( 2 ^ K ) + 1 ) /\ P e. Prime ) -> ( n e. NN0 -> ( K = ( 2 ^ n ) -> P = ( FermatNo ` n ) ) ) ) | 
						
							| 18 | 17 | imp |  |-  ( ( ( K e. NN /\ P = ( ( 2 ^ K ) + 1 ) /\ P e. Prime ) /\ n e. NN0 ) -> ( K = ( 2 ^ n ) -> P = ( FermatNo ` n ) ) ) | 
						
							| 19 | 18 | reximdva |  |-  ( ( K e. NN /\ P = ( ( 2 ^ K ) + 1 ) /\ P e. Prime ) -> ( E. n e. NN0 K = ( 2 ^ n ) -> E. n e. NN0 P = ( FermatNo ` n ) ) ) | 
						
							| 20 | 6 19 | mpd |  |-  ( ( K e. NN /\ P = ( ( 2 ^ K ) + 1 ) /\ P e. Prime ) -> E. n e. NN0 P = ( FermatNo ` n ) ) |