| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2prm |
⊢ 2 ∈ ℙ |
| 2 |
|
pcndvds2 |
⊢ ( ( 2 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → ¬ 2 ∥ ( 𝐾 / ( 2 ↑ ( 2 pCnt 𝐾 ) ) ) ) |
| 3 |
1 2
|
mpan |
⊢ ( 𝐾 ∈ ℕ → ¬ 2 ∥ ( 𝐾 / ( 2 ↑ ( 2 pCnt 𝐾 ) ) ) ) |
| 4 |
|
pcdvds |
⊢ ( ( 2 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → ( 2 ↑ ( 2 pCnt 𝐾 ) ) ∥ 𝐾 ) |
| 5 |
1 4
|
mpan |
⊢ ( 𝐾 ∈ ℕ → ( 2 ↑ ( 2 pCnt 𝐾 ) ) ∥ 𝐾 ) |
| 6 |
|
2nn |
⊢ 2 ∈ ℕ |
| 7 |
6
|
a1i |
⊢ ( 𝐾 ∈ ℕ → 2 ∈ ℕ ) |
| 8 |
1
|
a1i |
⊢ ( 𝐾 ∈ ℕ → 2 ∈ ℙ ) |
| 9 |
|
id |
⊢ ( 𝐾 ∈ ℕ → 𝐾 ∈ ℕ ) |
| 10 |
8 9
|
pccld |
⊢ ( 𝐾 ∈ ℕ → ( 2 pCnt 𝐾 ) ∈ ℕ0 ) |
| 11 |
7 10
|
nnexpcld |
⊢ ( 𝐾 ∈ ℕ → ( 2 ↑ ( 2 pCnt 𝐾 ) ) ∈ ℕ ) |
| 12 |
|
nndivdvds |
⊢ ( ( 𝐾 ∈ ℕ ∧ ( 2 ↑ ( 2 pCnt 𝐾 ) ) ∈ ℕ ) → ( ( 2 ↑ ( 2 pCnt 𝐾 ) ) ∥ 𝐾 ↔ ( 𝐾 / ( 2 ↑ ( 2 pCnt 𝐾 ) ) ) ∈ ℕ ) ) |
| 13 |
11 12
|
mpdan |
⊢ ( 𝐾 ∈ ℕ → ( ( 2 ↑ ( 2 pCnt 𝐾 ) ) ∥ 𝐾 ↔ ( 𝐾 / ( 2 ↑ ( 2 pCnt 𝐾 ) ) ) ∈ ℕ ) ) |
| 14 |
13
|
adantr |
⊢ ( ( 𝐾 ∈ ℕ ∧ ¬ 2 ∥ ( 𝐾 / ( 2 ↑ ( 2 pCnt 𝐾 ) ) ) ) → ( ( 2 ↑ ( 2 pCnt 𝐾 ) ) ∥ 𝐾 ↔ ( 𝐾 / ( 2 ↑ ( 2 pCnt 𝐾 ) ) ) ∈ ℕ ) ) |
| 15 |
|
elnn1uz2 |
⊢ ( ( 𝐾 / ( 2 ↑ ( 2 pCnt 𝐾 ) ) ) ∈ ℕ ↔ ( ( 𝐾 / ( 2 ↑ ( 2 pCnt 𝐾 ) ) ) = 1 ∨ ( 𝐾 / ( 2 ↑ ( 2 pCnt 𝐾 ) ) ) ∈ ( ℤ≥ ‘ 2 ) ) ) |
| 16 |
|
nncn |
⊢ ( 𝐾 ∈ ℕ → 𝐾 ∈ ℂ ) |
| 17 |
|
nncn |
⊢ ( ( 2 ↑ ( 2 pCnt 𝐾 ) ) ∈ ℕ → ( 2 ↑ ( 2 pCnt 𝐾 ) ) ∈ ℂ ) |
| 18 |
|
nnne0 |
⊢ ( ( 2 ↑ ( 2 pCnt 𝐾 ) ) ∈ ℕ → ( 2 ↑ ( 2 pCnt 𝐾 ) ) ≠ 0 ) |
| 19 |
17 18
|
jca |
⊢ ( ( 2 ↑ ( 2 pCnt 𝐾 ) ) ∈ ℕ → ( ( 2 ↑ ( 2 pCnt 𝐾 ) ) ∈ ℂ ∧ ( 2 ↑ ( 2 pCnt 𝐾 ) ) ≠ 0 ) ) |
| 20 |
11 19
|
syl |
⊢ ( 𝐾 ∈ ℕ → ( ( 2 ↑ ( 2 pCnt 𝐾 ) ) ∈ ℂ ∧ ( 2 ↑ ( 2 pCnt 𝐾 ) ) ≠ 0 ) ) |
| 21 |
|
3anass |
⊢ ( ( 𝐾 ∈ ℂ ∧ ( 2 ↑ ( 2 pCnt 𝐾 ) ) ∈ ℂ ∧ ( 2 ↑ ( 2 pCnt 𝐾 ) ) ≠ 0 ) ↔ ( 𝐾 ∈ ℂ ∧ ( ( 2 ↑ ( 2 pCnt 𝐾 ) ) ∈ ℂ ∧ ( 2 ↑ ( 2 pCnt 𝐾 ) ) ≠ 0 ) ) ) |
| 22 |
16 20 21
|
sylanbrc |
⊢ ( 𝐾 ∈ ℕ → ( 𝐾 ∈ ℂ ∧ ( 2 ↑ ( 2 pCnt 𝐾 ) ) ∈ ℂ ∧ ( 2 ↑ ( 2 pCnt 𝐾 ) ) ≠ 0 ) ) |
| 23 |
22
|
adantr |
⊢ ( ( 𝐾 ∈ ℕ ∧ ¬ 2 ∥ ( 𝐾 / ( 2 ↑ ( 2 pCnt 𝐾 ) ) ) ) → ( 𝐾 ∈ ℂ ∧ ( 2 ↑ ( 2 pCnt 𝐾 ) ) ∈ ℂ ∧ ( 2 ↑ ( 2 pCnt 𝐾 ) ) ≠ 0 ) ) |
| 24 |
|
diveq1 |
⊢ ( ( 𝐾 ∈ ℂ ∧ ( 2 ↑ ( 2 pCnt 𝐾 ) ) ∈ ℂ ∧ ( 2 ↑ ( 2 pCnt 𝐾 ) ) ≠ 0 ) → ( ( 𝐾 / ( 2 ↑ ( 2 pCnt 𝐾 ) ) ) = 1 ↔ 𝐾 = ( 2 ↑ ( 2 pCnt 𝐾 ) ) ) ) |
| 25 |
23 24
|
syl |
⊢ ( ( 𝐾 ∈ ℕ ∧ ¬ 2 ∥ ( 𝐾 / ( 2 ↑ ( 2 pCnt 𝐾 ) ) ) ) → ( ( 𝐾 / ( 2 ↑ ( 2 pCnt 𝐾 ) ) ) = 1 ↔ 𝐾 = ( 2 ↑ ( 2 pCnt 𝐾 ) ) ) ) |
| 26 |
10
|
adantr |
⊢ ( ( 𝐾 ∈ ℕ ∧ 𝐾 = ( 2 ↑ ( 2 pCnt 𝐾 ) ) ) → ( 2 pCnt 𝐾 ) ∈ ℕ0 ) |
| 27 |
|
oveq2 |
⊢ ( 𝑛 = ( 2 pCnt 𝐾 ) → ( 2 ↑ 𝑛 ) = ( 2 ↑ ( 2 pCnt 𝐾 ) ) ) |
| 28 |
27
|
eqeq2d |
⊢ ( 𝑛 = ( 2 pCnt 𝐾 ) → ( 𝐾 = ( 2 ↑ 𝑛 ) ↔ 𝐾 = ( 2 ↑ ( 2 pCnt 𝐾 ) ) ) ) |
| 29 |
28
|
adantl |
⊢ ( ( ( 𝐾 ∈ ℕ ∧ 𝐾 = ( 2 ↑ ( 2 pCnt 𝐾 ) ) ) ∧ 𝑛 = ( 2 pCnt 𝐾 ) ) → ( 𝐾 = ( 2 ↑ 𝑛 ) ↔ 𝐾 = ( 2 ↑ ( 2 pCnt 𝐾 ) ) ) ) |
| 30 |
|
simpr |
⊢ ( ( 𝐾 ∈ ℕ ∧ 𝐾 = ( 2 ↑ ( 2 pCnt 𝐾 ) ) ) → 𝐾 = ( 2 ↑ ( 2 pCnt 𝐾 ) ) ) |
| 31 |
26 29 30
|
rspcedvd |
⊢ ( ( 𝐾 ∈ ℕ ∧ 𝐾 = ( 2 ↑ ( 2 pCnt 𝐾 ) ) ) → ∃ 𝑛 ∈ ℕ0 𝐾 = ( 2 ↑ 𝑛 ) ) |
| 32 |
31
|
ex |
⊢ ( 𝐾 ∈ ℕ → ( 𝐾 = ( 2 ↑ ( 2 pCnt 𝐾 ) ) → ∃ 𝑛 ∈ ℕ0 𝐾 = ( 2 ↑ 𝑛 ) ) ) |
| 33 |
|
pm2.24 |
⊢ ( ∃ 𝑛 ∈ ℕ0 𝐾 = ( 2 ↑ 𝑛 ) → ( ¬ ∃ 𝑛 ∈ ℕ0 𝐾 = ( 2 ↑ 𝑛 ) → ∃ 𝑝 ∈ ( ℙ ∖ { 2 } ) 𝑝 ∥ 𝐾 ) ) |
| 34 |
32 33
|
syl6 |
⊢ ( 𝐾 ∈ ℕ → ( 𝐾 = ( 2 ↑ ( 2 pCnt 𝐾 ) ) → ( ¬ ∃ 𝑛 ∈ ℕ0 𝐾 = ( 2 ↑ 𝑛 ) → ∃ 𝑝 ∈ ( ℙ ∖ { 2 } ) 𝑝 ∥ 𝐾 ) ) ) |
| 35 |
34
|
adantr |
⊢ ( ( 𝐾 ∈ ℕ ∧ ¬ 2 ∥ ( 𝐾 / ( 2 ↑ ( 2 pCnt 𝐾 ) ) ) ) → ( 𝐾 = ( 2 ↑ ( 2 pCnt 𝐾 ) ) → ( ¬ ∃ 𝑛 ∈ ℕ0 𝐾 = ( 2 ↑ 𝑛 ) → ∃ 𝑝 ∈ ( ℙ ∖ { 2 } ) 𝑝 ∥ 𝐾 ) ) ) |
| 36 |
25 35
|
sylbid |
⊢ ( ( 𝐾 ∈ ℕ ∧ ¬ 2 ∥ ( 𝐾 / ( 2 ↑ ( 2 pCnt 𝐾 ) ) ) ) → ( ( 𝐾 / ( 2 ↑ ( 2 pCnt 𝐾 ) ) ) = 1 → ( ¬ ∃ 𝑛 ∈ ℕ0 𝐾 = ( 2 ↑ 𝑛 ) → ∃ 𝑝 ∈ ( ℙ ∖ { 2 } ) 𝑝 ∥ 𝐾 ) ) ) |
| 37 |
36
|
com12 |
⊢ ( ( 𝐾 / ( 2 ↑ ( 2 pCnt 𝐾 ) ) ) = 1 → ( ( 𝐾 ∈ ℕ ∧ ¬ 2 ∥ ( 𝐾 / ( 2 ↑ ( 2 pCnt 𝐾 ) ) ) ) → ( ¬ ∃ 𝑛 ∈ ℕ0 𝐾 = ( 2 ↑ 𝑛 ) → ∃ 𝑝 ∈ ( ℙ ∖ { 2 } ) 𝑝 ∥ 𝐾 ) ) ) |
| 38 |
|
exprmfct |
⊢ ( ( 𝐾 / ( 2 ↑ ( 2 pCnt 𝐾 ) ) ) ∈ ( ℤ≥ ‘ 2 ) → ∃ 𝑞 ∈ ℙ 𝑞 ∥ ( 𝐾 / ( 2 ↑ ( 2 pCnt 𝐾 ) ) ) ) |
| 39 |
|
breq1 |
⊢ ( 𝑞 = 2 → ( 𝑞 ∥ ( 𝐾 / ( 2 ↑ ( 2 pCnt 𝐾 ) ) ) ↔ 2 ∥ ( 𝐾 / ( 2 ↑ ( 2 pCnt 𝐾 ) ) ) ) ) |
| 40 |
39
|
biimpcd |
⊢ ( 𝑞 ∥ ( 𝐾 / ( 2 ↑ ( 2 pCnt 𝐾 ) ) ) → ( 𝑞 = 2 → 2 ∥ ( 𝐾 / ( 2 ↑ ( 2 pCnt 𝐾 ) ) ) ) ) |
| 41 |
40
|
adantl |
⊢ ( ( ( 𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ ) ∧ 𝑞 ∥ ( 𝐾 / ( 2 ↑ ( 2 pCnt 𝐾 ) ) ) ) → ( 𝑞 = 2 → 2 ∥ ( 𝐾 / ( 2 ↑ ( 2 pCnt 𝐾 ) ) ) ) ) |
| 42 |
41
|
necon3bd |
⊢ ( ( ( 𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ ) ∧ 𝑞 ∥ ( 𝐾 / ( 2 ↑ ( 2 pCnt 𝐾 ) ) ) ) → ( ¬ 2 ∥ ( 𝐾 / ( 2 ↑ ( 2 pCnt 𝐾 ) ) ) → 𝑞 ≠ 2 ) ) |
| 43 |
42
|
ex |
⊢ ( ( 𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ ) → ( 𝑞 ∥ ( 𝐾 / ( 2 ↑ ( 2 pCnt 𝐾 ) ) ) → ( ¬ 2 ∥ ( 𝐾 / ( 2 ↑ ( 2 pCnt 𝐾 ) ) ) → 𝑞 ≠ 2 ) ) ) |
| 44 |
|
prmnn |
⊢ ( 𝑞 ∈ ℙ → 𝑞 ∈ ℕ ) |
| 45 |
5 13
|
mpbid |
⊢ ( 𝐾 ∈ ℕ → ( 𝐾 / ( 2 ↑ ( 2 pCnt 𝐾 ) ) ) ∈ ℕ ) |
| 46 |
|
nndivides |
⊢ ( ( 𝑞 ∈ ℕ ∧ ( 𝐾 / ( 2 ↑ ( 2 pCnt 𝐾 ) ) ) ∈ ℕ ) → ( 𝑞 ∥ ( 𝐾 / ( 2 ↑ ( 2 pCnt 𝐾 ) ) ) ↔ ∃ 𝑚 ∈ ℕ ( 𝑚 · 𝑞 ) = ( 𝐾 / ( 2 ↑ ( 2 pCnt 𝐾 ) ) ) ) ) |
| 47 |
44 45 46
|
syl2anr |
⊢ ( ( 𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ ) → ( 𝑞 ∥ ( 𝐾 / ( 2 ↑ ( 2 pCnt 𝐾 ) ) ) ↔ ∃ 𝑚 ∈ ℕ ( 𝑚 · 𝑞 ) = ( 𝐾 / ( 2 ↑ ( 2 pCnt 𝐾 ) ) ) ) ) |
| 48 |
|
eqcom |
⊢ ( ( 𝑚 · 𝑞 ) = ( 𝐾 / ( 2 ↑ ( 2 pCnt 𝐾 ) ) ) ↔ ( 𝐾 / ( 2 ↑ ( 2 pCnt 𝐾 ) ) ) = ( 𝑚 · 𝑞 ) ) |
| 49 |
16
|
ad2antrr |
⊢ ( ( ( 𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ ) ∧ 𝑚 ∈ ℕ ) → 𝐾 ∈ ℂ ) |
| 50 |
|
simpr |
⊢ ( ( ( 𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ ) ∧ 𝑚 ∈ ℕ ) → 𝑚 ∈ ℕ ) |
| 51 |
44
|
ad2antlr |
⊢ ( ( ( 𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ ) ∧ 𝑚 ∈ ℕ ) → 𝑞 ∈ ℕ ) |
| 52 |
50 51
|
nnmulcld |
⊢ ( ( ( 𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ ) ∧ 𝑚 ∈ ℕ ) → ( 𝑚 · 𝑞 ) ∈ ℕ ) |
| 53 |
52
|
nncnd |
⊢ ( ( ( 𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ ) ∧ 𝑚 ∈ ℕ ) → ( 𝑚 · 𝑞 ) ∈ ℂ ) |
| 54 |
11
|
ad2antrr |
⊢ ( ( ( 𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ ) ∧ 𝑚 ∈ ℕ ) → ( 2 ↑ ( 2 pCnt 𝐾 ) ) ∈ ℕ ) |
| 55 |
54 19
|
syl |
⊢ ( ( ( 𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ ) ∧ 𝑚 ∈ ℕ ) → ( ( 2 ↑ ( 2 pCnt 𝐾 ) ) ∈ ℂ ∧ ( 2 ↑ ( 2 pCnt 𝐾 ) ) ≠ 0 ) ) |
| 56 |
|
divmul |
⊢ ( ( 𝐾 ∈ ℂ ∧ ( 𝑚 · 𝑞 ) ∈ ℂ ∧ ( ( 2 ↑ ( 2 pCnt 𝐾 ) ) ∈ ℂ ∧ ( 2 ↑ ( 2 pCnt 𝐾 ) ) ≠ 0 ) ) → ( ( 𝐾 / ( 2 ↑ ( 2 pCnt 𝐾 ) ) ) = ( 𝑚 · 𝑞 ) ↔ ( ( 2 ↑ ( 2 pCnt 𝐾 ) ) · ( 𝑚 · 𝑞 ) ) = 𝐾 ) ) |
| 57 |
49 53 55 56
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ ) ∧ 𝑚 ∈ ℕ ) → ( ( 𝐾 / ( 2 ↑ ( 2 pCnt 𝐾 ) ) ) = ( 𝑚 · 𝑞 ) ↔ ( ( 2 ↑ ( 2 pCnt 𝐾 ) ) · ( 𝑚 · 𝑞 ) ) = 𝐾 ) ) |
| 58 |
48 57
|
bitrid |
⊢ ( ( ( 𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ ) ∧ 𝑚 ∈ ℕ ) → ( ( 𝑚 · 𝑞 ) = ( 𝐾 / ( 2 ↑ ( 2 pCnt 𝐾 ) ) ) ↔ ( ( 2 ↑ ( 2 pCnt 𝐾 ) ) · ( 𝑚 · 𝑞 ) ) = 𝐾 ) ) |
| 59 |
|
simpr |
⊢ ( ( 𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ ) → 𝑞 ∈ ℙ ) |
| 60 |
59
|
adantr |
⊢ ( ( ( 𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ ) ∧ 𝑚 ∈ ℕ ) → 𝑞 ∈ ℙ ) |
| 61 |
60
|
anim1i |
⊢ ( ( ( ( 𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ ) ∧ 𝑚 ∈ ℕ ) ∧ 𝑞 ≠ 2 ) → ( 𝑞 ∈ ℙ ∧ 𝑞 ≠ 2 ) ) |
| 62 |
|
eldifsn |
⊢ ( 𝑞 ∈ ( ℙ ∖ { 2 } ) ↔ ( 𝑞 ∈ ℙ ∧ 𝑞 ≠ 2 ) ) |
| 63 |
61 62
|
sylibr |
⊢ ( ( ( ( 𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ ) ∧ 𝑚 ∈ ℕ ) ∧ 𝑞 ≠ 2 ) → 𝑞 ∈ ( ℙ ∖ { 2 } ) ) |
| 64 |
63
|
adantr |
⊢ ( ( ( ( ( 𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ ) ∧ 𝑚 ∈ ℕ ) ∧ 𝑞 ≠ 2 ) ∧ ( ( 2 ↑ ( 2 pCnt 𝐾 ) ) · ( 𝑚 · 𝑞 ) ) = 𝐾 ) → 𝑞 ∈ ( ℙ ∖ { 2 } ) ) |
| 65 |
|
breq1 |
⊢ ( 𝑝 = 𝑞 → ( 𝑝 ∥ 𝐾 ↔ 𝑞 ∥ 𝐾 ) ) |
| 66 |
65
|
adantl |
⊢ ( ( ( ( ( ( 𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ ) ∧ 𝑚 ∈ ℕ ) ∧ 𝑞 ≠ 2 ) ∧ ( ( 2 ↑ ( 2 pCnt 𝐾 ) ) · ( 𝑚 · 𝑞 ) ) = 𝐾 ) ∧ 𝑝 = 𝑞 ) → ( 𝑝 ∥ 𝐾 ↔ 𝑞 ∥ 𝐾 ) ) |
| 67 |
54 50
|
nnmulcld |
⊢ ( ( ( 𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ ) ∧ 𝑚 ∈ ℕ ) → ( ( 2 ↑ ( 2 pCnt 𝐾 ) ) · 𝑚 ) ∈ ℕ ) |
| 68 |
67
|
nnzd |
⊢ ( ( ( 𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ ) ∧ 𝑚 ∈ ℕ ) → ( ( 2 ↑ ( 2 pCnt 𝐾 ) ) · 𝑚 ) ∈ ℤ ) |
| 69 |
44
|
nnzd |
⊢ ( 𝑞 ∈ ℙ → 𝑞 ∈ ℤ ) |
| 70 |
69
|
ad2antlr |
⊢ ( ( ( 𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ ) ∧ 𝑚 ∈ ℕ ) → 𝑞 ∈ ℤ ) |
| 71 |
68 70
|
jca |
⊢ ( ( ( 𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ ) ∧ 𝑚 ∈ ℕ ) → ( ( ( 2 ↑ ( 2 pCnt 𝐾 ) ) · 𝑚 ) ∈ ℤ ∧ 𝑞 ∈ ℤ ) ) |
| 72 |
71
|
adantr |
⊢ ( ( ( ( 𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ ) ∧ 𝑚 ∈ ℕ ) ∧ 𝑞 ≠ 2 ) → ( ( ( 2 ↑ ( 2 pCnt 𝐾 ) ) · 𝑚 ) ∈ ℤ ∧ 𝑞 ∈ ℤ ) ) |
| 73 |
|
dvdsmul2 |
⊢ ( ( ( ( 2 ↑ ( 2 pCnt 𝐾 ) ) · 𝑚 ) ∈ ℤ ∧ 𝑞 ∈ ℤ ) → 𝑞 ∥ ( ( ( 2 ↑ ( 2 pCnt 𝐾 ) ) · 𝑚 ) · 𝑞 ) ) |
| 74 |
72 73
|
syl |
⊢ ( ( ( ( 𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ ) ∧ 𝑚 ∈ ℕ ) ∧ 𝑞 ≠ 2 ) → 𝑞 ∥ ( ( ( 2 ↑ ( 2 pCnt 𝐾 ) ) · 𝑚 ) · 𝑞 ) ) |
| 75 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
| 76 |
75
|
a1i |
⊢ ( 𝐾 ∈ ℕ → 2 ∈ ℕ0 ) |
| 77 |
76 10
|
nn0expcld |
⊢ ( 𝐾 ∈ ℕ → ( 2 ↑ ( 2 pCnt 𝐾 ) ) ∈ ℕ0 ) |
| 78 |
77
|
ad2antrr |
⊢ ( ( ( 𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ ) ∧ 𝑚 ∈ ℕ ) → ( 2 ↑ ( 2 pCnt 𝐾 ) ) ∈ ℕ0 ) |
| 79 |
78
|
nn0cnd |
⊢ ( ( ( 𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ ) ∧ 𝑚 ∈ ℕ ) → ( 2 ↑ ( 2 pCnt 𝐾 ) ) ∈ ℂ ) |
| 80 |
|
nncn |
⊢ ( 𝑚 ∈ ℕ → 𝑚 ∈ ℂ ) |
| 81 |
80
|
adantl |
⊢ ( ( ( 𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ ) ∧ 𝑚 ∈ ℕ ) → 𝑚 ∈ ℂ ) |
| 82 |
44
|
nncnd |
⊢ ( 𝑞 ∈ ℙ → 𝑞 ∈ ℂ ) |
| 83 |
82
|
ad2antlr |
⊢ ( ( ( 𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ ) ∧ 𝑚 ∈ ℕ ) → 𝑞 ∈ ℂ ) |
| 84 |
79 81 83
|
3jca |
⊢ ( ( ( 𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ ) ∧ 𝑚 ∈ ℕ ) → ( ( 2 ↑ ( 2 pCnt 𝐾 ) ) ∈ ℂ ∧ 𝑚 ∈ ℂ ∧ 𝑞 ∈ ℂ ) ) |
| 85 |
84
|
adantr |
⊢ ( ( ( ( 𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ ) ∧ 𝑚 ∈ ℕ ) ∧ 𝑞 ≠ 2 ) → ( ( 2 ↑ ( 2 pCnt 𝐾 ) ) ∈ ℂ ∧ 𝑚 ∈ ℂ ∧ 𝑞 ∈ ℂ ) ) |
| 86 |
|
mulass |
⊢ ( ( ( 2 ↑ ( 2 pCnt 𝐾 ) ) ∈ ℂ ∧ 𝑚 ∈ ℂ ∧ 𝑞 ∈ ℂ ) → ( ( ( 2 ↑ ( 2 pCnt 𝐾 ) ) · 𝑚 ) · 𝑞 ) = ( ( 2 ↑ ( 2 pCnt 𝐾 ) ) · ( 𝑚 · 𝑞 ) ) ) |
| 87 |
85 86
|
syl |
⊢ ( ( ( ( 𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ ) ∧ 𝑚 ∈ ℕ ) ∧ 𝑞 ≠ 2 ) → ( ( ( 2 ↑ ( 2 pCnt 𝐾 ) ) · 𝑚 ) · 𝑞 ) = ( ( 2 ↑ ( 2 pCnt 𝐾 ) ) · ( 𝑚 · 𝑞 ) ) ) |
| 88 |
74 87
|
breqtrd |
⊢ ( ( ( ( 𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ ) ∧ 𝑚 ∈ ℕ ) ∧ 𝑞 ≠ 2 ) → 𝑞 ∥ ( ( 2 ↑ ( 2 pCnt 𝐾 ) ) · ( 𝑚 · 𝑞 ) ) ) |
| 89 |
88
|
adantr |
⊢ ( ( ( ( ( 𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ ) ∧ 𝑚 ∈ ℕ ) ∧ 𝑞 ≠ 2 ) ∧ ( ( 2 ↑ ( 2 pCnt 𝐾 ) ) · ( 𝑚 · 𝑞 ) ) = 𝐾 ) → 𝑞 ∥ ( ( 2 ↑ ( 2 pCnt 𝐾 ) ) · ( 𝑚 · 𝑞 ) ) ) |
| 90 |
|
breq2 |
⊢ ( ( ( 2 ↑ ( 2 pCnt 𝐾 ) ) · ( 𝑚 · 𝑞 ) ) = 𝐾 → ( 𝑞 ∥ ( ( 2 ↑ ( 2 pCnt 𝐾 ) ) · ( 𝑚 · 𝑞 ) ) ↔ 𝑞 ∥ 𝐾 ) ) |
| 91 |
90
|
adantl |
⊢ ( ( ( ( ( 𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ ) ∧ 𝑚 ∈ ℕ ) ∧ 𝑞 ≠ 2 ) ∧ ( ( 2 ↑ ( 2 pCnt 𝐾 ) ) · ( 𝑚 · 𝑞 ) ) = 𝐾 ) → ( 𝑞 ∥ ( ( 2 ↑ ( 2 pCnt 𝐾 ) ) · ( 𝑚 · 𝑞 ) ) ↔ 𝑞 ∥ 𝐾 ) ) |
| 92 |
89 91
|
mpbid |
⊢ ( ( ( ( ( 𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ ) ∧ 𝑚 ∈ ℕ ) ∧ 𝑞 ≠ 2 ) ∧ ( ( 2 ↑ ( 2 pCnt 𝐾 ) ) · ( 𝑚 · 𝑞 ) ) = 𝐾 ) → 𝑞 ∥ 𝐾 ) |
| 93 |
64 66 92
|
rspcedvd |
⊢ ( ( ( ( ( 𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ ) ∧ 𝑚 ∈ ℕ ) ∧ 𝑞 ≠ 2 ) ∧ ( ( 2 ↑ ( 2 pCnt 𝐾 ) ) · ( 𝑚 · 𝑞 ) ) = 𝐾 ) → ∃ 𝑝 ∈ ( ℙ ∖ { 2 } ) 𝑝 ∥ 𝐾 ) |
| 94 |
93
|
a1d |
⊢ ( ( ( ( ( 𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ ) ∧ 𝑚 ∈ ℕ ) ∧ 𝑞 ≠ 2 ) ∧ ( ( 2 ↑ ( 2 pCnt 𝐾 ) ) · ( 𝑚 · 𝑞 ) ) = 𝐾 ) → ( ¬ ∃ 𝑛 ∈ ℕ0 𝐾 = ( 2 ↑ 𝑛 ) → ∃ 𝑝 ∈ ( ℙ ∖ { 2 } ) 𝑝 ∥ 𝐾 ) ) |
| 95 |
94
|
exp31 |
⊢ ( ( ( 𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ ) ∧ 𝑚 ∈ ℕ ) → ( 𝑞 ≠ 2 → ( ( ( 2 ↑ ( 2 pCnt 𝐾 ) ) · ( 𝑚 · 𝑞 ) ) = 𝐾 → ( ¬ ∃ 𝑛 ∈ ℕ0 𝐾 = ( 2 ↑ 𝑛 ) → ∃ 𝑝 ∈ ( ℙ ∖ { 2 } ) 𝑝 ∥ 𝐾 ) ) ) ) |
| 96 |
95
|
com23 |
⊢ ( ( ( 𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ ) ∧ 𝑚 ∈ ℕ ) → ( ( ( 2 ↑ ( 2 pCnt 𝐾 ) ) · ( 𝑚 · 𝑞 ) ) = 𝐾 → ( 𝑞 ≠ 2 → ( ¬ ∃ 𝑛 ∈ ℕ0 𝐾 = ( 2 ↑ 𝑛 ) → ∃ 𝑝 ∈ ( ℙ ∖ { 2 } ) 𝑝 ∥ 𝐾 ) ) ) ) |
| 97 |
58 96
|
sylbid |
⊢ ( ( ( 𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ ) ∧ 𝑚 ∈ ℕ ) → ( ( 𝑚 · 𝑞 ) = ( 𝐾 / ( 2 ↑ ( 2 pCnt 𝐾 ) ) ) → ( 𝑞 ≠ 2 → ( ¬ ∃ 𝑛 ∈ ℕ0 𝐾 = ( 2 ↑ 𝑛 ) → ∃ 𝑝 ∈ ( ℙ ∖ { 2 } ) 𝑝 ∥ 𝐾 ) ) ) ) |
| 98 |
97
|
rexlimdva |
⊢ ( ( 𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ ) → ( ∃ 𝑚 ∈ ℕ ( 𝑚 · 𝑞 ) = ( 𝐾 / ( 2 ↑ ( 2 pCnt 𝐾 ) ) ) → ( 𝑞 ≠ 2 → ( ¬ ∃ 𝑛 ∈ ℕ0 𝐾 = ( 2 ↑ 𝑛 ) → ∃ 𝑝 ∈ ( ℙ ∖ { 2 } ) 𝑝 ∥ 𝐾 ) ) ) ) |
| 99 |
47 98
|
sylbid |
⊢ ( ( 𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ ) → ( 𝑞 ∥ ( 𝐾 / ( 2 ↑ ( 2 pCnt 𝐾 ) ) ) → ( 𝑞 ≠ 2 → ( ¬ ∃ 𝑛 ∈ ℕ0 𝐾 = ( 2 ↑ 𝑛 ) → ∃ 𝑝 ∈ ( ℙ ∖ { 2 } ) 𝑝 ∥ 𝐾 ) ) ) ) |
| 100 |
43 99
|
syldd |
⊢ ( ( 𝐾 ∈ ℕ ∧ 𝑞 ∈ ℙ ) → ( 𝑞 ∥ ( 𝐾 / ( 2 ↑ ( 2 pCnt 𝐾 ) ) ) → ( ¬ 2 ∥ ( 𝐾 / ( 2 ↑ ( 2 pCnt 𝐾 ) ) ) → ( ¬ ∃ 𝑛 ∈ ℕ0 𝐾 = ( 2 ↑ 𝑛 ) → ∃ 𝑝 ∈ ( ℙ ∖ { 2 } ) 𝑝 ∥ 𝐾 ) ) ) ) |
| 101 |
100
|
rexlimdva |
⊢ ( 𝐾 ∈ ℕ → ( ∃ 𝑞 ∈ ℙ 𝑞 ∥ ( 𝐾 / ( 2 ↑ ( 2 pCnt 𝐾 ) ) ) → ( ¬ 2 ∥ ( 𝐾 / ( 2 ↑ ( 2 pCnt 𝐾 ) ) ) → ( ¬ ∃ 𝑛 ∈ ℕ0 𝐾 = ( 2 ↑ 𝑛 ) → ∃ 𝑝 ∈ ( ℙ ∖ { 2 } ) 𝑝 ∥ 𝐾 ) ) ) ) |
| 102 |
101
|
com12 |
⊢ ( ∃ 𝑞 ∈ ℙ 𝑞 ∥ ( 𝐾 / ( 2 ↑ ( 2 pCnt 𝐾 ) ) ) → ( 𝐾 ∈ ℕ → ( ¬ 2 ∥ ( 𝐾 / ( 2 ↑ ( 2 pCnt 𝐾 ) ) ) → ( ¬ ∃ 𝑛 ∈ ℕ0 𝐾 = ( 2 ↑ 𝑛 ) → ∃ 𝑝 ∈ ( ℙ ∖ { 2 } ) 𝑝 ∥ 𝐾 ) ) ) ) |
| 103 |
102
|
impd |
⊢ ( ∃ 𝑞 ∈ ℙ 𝑞 ∥ ( 𝐾 / ( 2 ↑ ( 2 pCnt 𝐾 ) ) ) → ( ( 𝐾 ∈ ℕ ∧ ¬ 2 ∥ ( 𝐾 / ( 2 ↑ ( 2 pCnt 𝐾 ) ) ) ) → ( ¬ ∃ 𝑛 ∈ ℕ0 𝐾 = ( 2 ↑ 𝑛 ) → ∃ 𝑝 ∈ ( ℙ ∖ { 2 } ) 𝑝 ∥ 𝐾 ) ) ) |
| 104 |
38 103
|
syl |
⊢ ( ( 𝐾 / ( 2 ↑ ( 2 pCnt 𝐾 ) ) ) ∈ ( ℤ≥ ‘ 2 ) → ( ( 𝐾 ∈ ℕ ∧ ¬ 2 ∥ ( 𝐾 / ( 2 ↑ ( 2 pCnt 𝐾 ) ) ) ) → ( ¬ ∃ 𝑛 ∈ ℕ0 𝐾 = ( 2 ↑ 𝑛 ) → ∃ 𝑝 ∈ ( ℙ ∖ { 2 } ) 𝑝 ∥ 𝐾 ) ) ) |
| 105 |
37 104
|
jaoi |
⊢ ( ( ( 𝐾 / ( 2 ↑ ( 2 pCnt 𝐾 ) ) ) = 1 ∨ ( 𝐾 / ( 2 ↑ ( 2 pCnt 𝐾 ) ) ) ∈ ( ℤ≥ ‘ 2 ) ) → ( ( 𝐾 ∈ ℕ ∧ ¬ 2 ∥ ( 𝐾 / ( 2 ↑ ( 2 pCnt 𝐾 ) ) ) ) → ( ¬ ∃ 𝑛 ∈ ℕ0 𝐾 = ( 2 ↑ 𝑛 ) → ∃ 𝑝 ∈ ( ℙ ∖ { 2 } ) 𝑝 ∥ 𝐾 ) ) ) |
| 106 |
15 105
|
sylbi |
⊢ ( ( 𝐾 / ( 2 ↑ ( 2 pCnt 𝐾 ) ) ) ∈ ℕ → ( ( 𝐾 ∈ ℕ ∧ ¬ 2 ∥ ( 𝐾 / ( 2 ↑ ( 2 pCnt 𝐾 ) ) ) ) → ( ¬ ∃ 𝑛 ∈ ℕ0 𝐾 = ( 2 ↑ 𝑛 ) → ∃ 𝑝 ∈ ( ℙ ∖ { 2 } ) 𝑝 ∥ 𝐾 ) ) ) |
| 107 |
106
|
com12 |
⊢ ( ( 𝐾 ∈ ℕ ∧ ¬ 2 ∥ ( 𝐾 / ( 2 ↑ ( 2 pCnt 𝐾 ) ) ) ) → ( ( 𝐾 / ( 2 ↑ ( 2 pCnt 𝐾 ) ) ) ∈ ℕ → ( ¬ ∃ 𝑛 ∈ ℕ0 𝐾 = ( 2 ↑ 𝑛 ) → ∃ 𝑝 ∈ ( ℙ ∖ { 2 } ) 𝑝 ∥ 𝐾 ) ) ) |
| 108 |
14 107
|
sylbid |
⊢ ( ( 𝐾 ∈ ℕ ∧ ¬ 2 ∥ ( 𝐾 / ( 2 ↑ ( 2 pCnt 𝐾 ) ) ) ) → ( ( 2 ↑ ( 2 pCnt 𝐾 ) ) ∥ 𝐾 → ( ¬ ∃ 𝑛 ∈ ℕ0 𝐾 = ( 2 ↑ 𝑛 ) → ∃ 𝑝 ∈ ( ℙ ∖ { 2 } ) 𝑝 ∥ 𝐾 ) ) ) |
| 109 |
108
|
ex |
⊢ ( 𝐾 ∈ ℕ → ( ¬ 2 ∥ ( 𝐾 / ( 2 ↑ ( 2 pCnt 𝐾 ) ) ) → ( ( 2 ↑ ( 2 pCnt 𝐾 ) ) ∥ 𝐾 → ( ¬ ∃ 𝑛 ∈ ℕ0 𝐾 = ( 2 ↑ 𝑛 ) → ∃ 𝑝 ∈ ( ℙ ∖ { 2 } ) 𝑝 ∥ 𝐾 ) ) ) ) |
| 110 |
3 5 109
|
mp2d |
⊢ ( 𝐾 ∈ ℕ → ( ¬ ∃ 𝑛 ∈ ℕ0 𝐾 = ( 2 ↑ 𝑛 ) → ∃ 𝑝 ∈ ( ℙ ∖ { 2 } ) 𝑝 ∥ 𝐾 ) ) |
| 111 |
110
|
imp |
⊢ ( ( 𝐾 ∈ ℕ ∧ ¬ ∃ 𝑛 ∈ ℕ0 𝐾 = ( 2 ↑ 𝑛 ) ) → ∃ 𝑝 ∈ ( ℙ ∖ { 2 } ) 𝑝 ∥ 𝐾 ) |