| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2prm |
|- 2 e. Prime |
| 2 |
|
pcndvds2 |
|- ( ( 2 e. Prime /\ K e. NN ) -> -. 2 || ( K / ( 2 ^ ( 2 pCnt K ) ) ) ) |
| 3 |
1 2
|
mpan |
|- ( K e. NN -> -. 2 || ( K / ( 2 ^ ( 2 pCnt K ) ) ) ) |
| 4 |
|
pcdvds |
|- ( ( 2 e. Prime /\ K e. NN ) -> ( 2 ^ ( 2 pCnt K ) ) || K ) |
| 5 |
1 4
|
mpan |
|- ( K e. NN -> ( 2 ^ ( 2 pCnt K ) ) || K ) |
| 6 |
|
2nn |
|- 2 e. NN |
| 7 |
6
|
a1i |
|- ( K e. NN -> 2 e. NN ) |
| 8 |
1
|
a1i |
|- ( K e. NN -> 2 e. Prime ) |
| 9 |
|
id |
|- ( K e. NN -> K e. NN ) |
| 10 |
8 9
|
pccld |
|- ( K e. NN -> ( 2 pCnt K ) e. NN0 ) |
| 11 |
7 10
|
nnexpcld |
|- ( K e. NN -> ( 2 ^ ( 2 pCnt K ) ) e. NN ) |
| 12 |
|
nndivdvds |
|- ( ( K e. NN /\ ( 2 ^ ( 2 pCnt K ) ) e. NN ) -> ( ( 2 ^ ( 2 pCnt K ) ) || K <-> ( K / ( 2 ^ ( 2 pCnt K ) ) ) e. NN ) ) |
| 13 |
11 12
|
mpdan |
|- ( K e. NN -> ( ( 2 ^ ( 2 pCnt K ) ) || K <-> ( K / ( 2 ^ ( 2 pCnt K ) ) ) e. NN ) ) |
| 14 |
13
|
adantr |
|- ( ( K e. NN /\ -. 2 || ( K / ( 2 ^ ( 2 pCnt K ) ) ) ) -> ( ( 2 ^ ( 2 pCnt K ) ) || K <-> ( K / ( 2 ^ ( 2 pCnt K ) ) ) e. NN ) ) |
| 15 |
|
elnn1uz2 |
|- ( ( K / ( 2 ^ ( 2 pCnt K ) ) ) e. NN <-> ( ( K / ( 2 ^ ( 2 pCnt K ) ) ) = 1 \/ ( K / ( 2 ^ ( 2 pCnt K ) ) ) e. ( ZZ>= ` 2 ) ) ) |
| 16 |
|
nncn |
|- ( K e. NN -> K e. CC ) |
| 17 |
|
nncn |
|- ( ( 2 ^ ( 2 pCnt K ) ) e. NN -> ( 2 ^ ( 2 pCnt K ) ) e. CC ) |
| 18 |
|
nnne0 |
|- ( ( 2 ^ ( 2 pCnt K ) ) e. NN -> ( 2 ^ ( 2 pCnt K ) ) =/= 0 ) |
| 19 |
17 18
|
jca |
|- ( ( 2 ^ ( 2 pCnt K ) ) e. NN -> ( ( 2 ^ ( 2 pCnt K ) ) e. CC /\ ( 2 ^ ( 2 pCnt K ) ) =/= 0 ) ) |
| 20 |
11 19
|
syl |
|- ( K e. NN -> ( ( 2 ^ ( 2 pCnt K ) ) e. CC /\ ( 2 ^ ( 2 pCnt K ) ) =/= 0 ) ) |
| 21 |
|
3anass |
|- ( ( K e. CC /\ ( 2 ^ ( 2 pCnt K ) ) e. CC /\ ( 2 ^ ( 2 pCnt K ) ) =/= 0 ) <-> ( K e. CC /\ ( ( 2 ^ ( 2 pCnt K ) ) e. CC /\ ( 2 ^ ( 2 pCnt K ) ) =/= 0 ) ) ) |
| 22 |
16 20 21
|
sylanbrc |
|- ( K e. NN -> ( K e. CC /\ ( 2 ^ ( 2 pCnt K ) ) e. CC /\ ( 2 ^ ( 2 pCnt K ) ) =/= 0 ) ) |
| 23 |
22
|
adantr |
|- ( ( K e. NN /\ -. 2 || ( K / ( 2 ^ ( 2 pCnt K ) ) ) ) -> ( K e. CC /\ ( 2 ^ ( 2 pCnt K ) ) e. CC /\ ( 2 ^ ( 2 pCnt K ) ) =/= 0 ) ) |
| 24 |
|
diveq1 |
|- ( ( K e. CC /\ ( 2 ^ ( 2 pCnt K ) ) e. CC /\ ( 2 ^ ( 2 pCnt K ) ) =/= 0 ) -> ( ( K / ( 2 ^ ( 2 pCnt K ) ) ) = 1 <-> K = ( 2 ^ ( 2 pCnt K ) ) ) ) |
| 25 |
23 24
|
syl |
|- ( ( K e. NN /\ -. 2 || ( K / ( 2 ^ ( 2 pCnt K ) ) ) ) -> ( ( K / ( 2 ^ ( 2 pCnt K ) ) ) = 1 <-> K = ( 2 ^ ( 2 pCnt K ) ) ) ) |
| 26 |
10
|
adantr |
|- ( ( K e. NN /\ K = ( 2 ^ ( 2 pCnt K ) ) ) -> ( 2 pCnt K ) e. NN0 ) |
| 27 |
|
oveq2 |
|- ( n = ( 2 pCnt K ) -> ( 2 ^ n ) = ( 2 ^ ( 2 pCnt K ) ) ) |
| 28 |
27
|
eqeq2d |
|- ( n = ( 2 pCnt K ) -> ( K = ( 2 ^ n ) <-> K = ( 2 ^ ( 2 pCnt K ) ) ) ) |
| 29 |
28
|
adantl |
|- ( ( ( K e. NN /\ K = ( 2 ^ ( 2 pCnt K ) ) ) /\ n = ( 2 pCnt K ) ) -> ( K = ( 2 ^ n ) <-> K = ( 2 ^ ( 2 pCnt K ) ) ) ) |
| 30 |
|
simpr |
|- ( ( K e. NN /\ K = ( 2 ^ ( 2 pCnt K ) ) ) -> K = ( 2 ^ ( 2 pCnt K ) ) ) |
| 31 |
26 29 30
|
rspcedvd |
|- ( ( K e. NN /\ K = ( 2 ^ ( 2 pCnt K ) ) ) -> E. n e. NN0 K = ( 2 ^ n ) ) |
| 32 |
31
|
ex |
|- ( K e. NN -> ( K = ( 2 ^ ( 2 pCnt K ) ) -> E. n e. NN0 K = ( 2 ^ n ) ) ) |
| 33 |
|
pm2.24 |
|- ( E. n e. NN0 K = ( 2 ^ n ) -> ( -. E. n e. NN0 K = ( 2 ^ n ) -> E. p e. ( Prime \ { 2 } ) p || K ) ) |
| 34 |
32 33
|
syl6 |
|- ( K e. NN -> ( K = ( 2 ^ ( 2 pCnt K ) ) -> ( -. E. n e. NN0 K = ( 2 ^ n ) -> E. p e. ( Prime \ { 2 } ) p || K ) ) ) |
| 35 |
34
|
adantr |
|- ( ( K e. NN /\ -. 2 || ( K / ( 2 ^ ( 2 pCnt K ) ) ) ) -> ( K = ( 2 ^ ( 2 pCnt K ) ) -> ( -. E. n e. NN0 K = ( 2 ^ n ) -> E. p e. ( Prime \ { 2 } ) p || K ) ) ) |
| 36 |
25 35
|
sylbid |
|- ( ( K e. NN /\ -. 2 || ( K / ( 2 ^ ( 2 pCnt K ) ) ) ) -> ( ( K / ( 2 ^ ( 2 pCnt K ) ) ) = 1 -> ( -. E. n e. NN0 K = ( 2 ^ n ) -> E. p e. ( Prime \ { 2 } ) p || K ) ) ) |
| 37 |
36
|
com12 |
|- ( ( K / ( 2 ^ ( 2 pCnt K ) ) ) = 1 -> ( ( K e. NN /\ -. 2 || ( K / ( 2 ^ ( 2 pCnt K ) ) ) ) -> ( -. E. n e. NN0 K = ( 2 ^ n ) -> E. p e. ( Prime \ { 2 } ) p || K ) ) ) |
| 38 |
|
exprmfct |
|- ( ( K / ( 2 ^ ( 2 pCnt K ) ) ) e. ( ZZ>= ` 2 ) -> E. q e. Prime q || ( K / ( 2 ^ ( 2 pCnt K ) ) ) ) |
| 39 |
|
breq1 |
|- ( q = 2 -> ( q || ( K / ( 2 ^ ( 2 pCnt K ) ) ) <-> 2 || ( K / ( 2 ^ ( 2 pCnt K ) ) ) ) ) |
| 40 |
39
|
biimpcd |
|- ( q || ( K / ( 2 ^ ( 2 pCnt K ) ) ) -> ( q = 2 -> 2 || ( K / ( 2 ^ ( 2 pCnt K ) ) ) ) ) |
| 41 |
40
|
adantl |
|- ( ( ( K e. NN /\ q e. Prime ) /\ q || ( K / ( 2 ^ ( 2 pCnt K ) ) ) ) -> ( q = 2 -> 2 || ( K / ( 2 ^ ( 2 pCnt K ) ) ) ) ) |
| 42 |
41
|
necon3bd |
|- ( ( ( K e. NN /\ q e. Prime ) /\ q || ( K / ( 2 ^ ( 2 pCnt K ) ) ) ) -> ( -. 2 || ( K / ( 2 ^ ( 2 pCnt K ) ) ) -> q =/= 2 ) ) |
| 43 |
42
|
ex |
|- ( ( K e. NN /\ q e. Prime ) -> ( q || ( K / ( 2 ^ ( 2 pCnt K ) ) ) -> ( -. 2 || ( K / ( 2 ^ ( 2 pCnt K ) ) ) -> q =/= 2 ) ) ) |
| 44 |
|
prmnn |
|- ( q e. Prime -> q e. NN ) |
| 45 |
5 13
|
mpbid |
|- ( K e. NN -> ( K / ( 2 ^ ( 2 pCnt K ) ) ) e. NN ) |
| 46 |
|
nndivides |
|- ( ( q e. NN /\ ( K / ( 2 ^ ( 2 pCnt K ) ) ) e. NN ) -> ( q || ( K / ( 2 ^ ( 2 pCnt K ) ) ) <-> E. m e. NN ( m x. q ) = ( K / ( 2 ^ ( 2 pCnt K ) ) ) ) ) |
| 47 |
44 45 46
|
syl2anr |
|- ( ( K e. NN /\ q e. Prime ) -> ( q || ( K / ( 2 ^ ( 2 pCnt K ) ) ) <-> E. m e. NN ( m x. q ) = ( K / ( 2 ^ ( 2 pCnt K ) ) ) ) ) |
| 48 |
|
eqcom |
|- ( ( m x. q ) = ( K / ( 2 ^ ( 2 pCnt K ) ) ) <-> ( K / ( 2 ^ ( 2 pCnt K ) ) ) = ( m x. q ) ) |
| 49 |
16
|
ad2antrr |
|- ( ( ( K e. NN /\ q e. Prime ) /\ m e. NN ) -> K e. CC ) |
| 50 |
|
simpr |
|- ( ( ( K e. NN /\ q e. Prime ) /\ m e. NN ) -> m e. NN ) |
| 51 |
44
|
ad2antlr |
|- ( ( ( K e. NN /\ q e. Prime ) /\ m e. NN ) -> q e. NN ) |
| 52 |
50 51
|
nnmulcld |
|- ( ( ( K e. NN /\ q e. Prime ) /\ m e. NN ) -> ( m x. q ) e. NN ) |
| 53 |
52
|
nncnd |
|- ( ( ( K e. NN /\ q e. Prime ) /\ m e. NN ) -> ( m x. q ) e. CC ) |
| 54 |
11
|
ad2antrr |
|- ( ( ( K e. NN /\ q e. Prime ) /\ m e. NN ) -> ( 2 ^ ( 2 pCnt K ) ) e. NN ) |
| 55 |
54 19
|
syl |
|- ( ( ( K e. NN /\ q e. Prime ) /\ m e. NN ) -> ( ( 2 ^ ( 2 pCnt K ) ) e. CC /\ ( 2 ^ ( 2 pCnt K ) ) =/= 0 ) ) |
| 56 |
|
divmul |
|- ( ( K e. CC /\ ( m x. q ) e. CC /\ ( ( 2 ^ ( 2 pCnt K ) ) e. CC /\ ( 2 ^ ( 2 pCnt K ) ) =/= 0 ) ) -> ( ( K / ( 2 ^ ( 2 pCnt K ) ) ) = ( m x. q ) <-> ( ( 2 ^ ( 2 pCnt K ) ) x. ( m x. q ) ) = K ) ) |
| 57 |
49 53 55 56
|
syl3anc |
|- ( ( ( K e. NN /\ q e. Prime ) /\ m e. NN ) -> ( ( K / ( 2 ^ ( 2 pCnt K ) ) ) = ( m x. q ) <-> ( ( 2 ^ ( 2 pCnt K ) ) x. ( m x. q ) ) = K ) ) |
| 58 |
48 57
|
bitrid |
|- ( ( ( K e. NN /\ q e. Prime ) /\ m e. NN ) -> ( ( m x. q ) = ( K / ( 2 ^ ( 2 pCnt K ) ) ) <-> ( ( 2 ^ ( 2 pCnt K ) ) x. ( m x. q ) ) = K ) ) |
| 59 |
|
simpr |
|- ( ( K e. NN /\ q e. Prime ) -> q e. Prime ) |
| 60 |
59
|
adantr |
|- ( ( ( K e. NN /\ q e. Prime ) /\ m e. NN ) -> q e. Prime ) |
| 61 |
60
|
anim1i |
|- ( ( ( ( K e. NN /\ q e. Prime ) /\ m e. NN ) /\ q =/= 2 ) -> ( q e. Prime /\ q =/= 2 ) ) |
| 62 |
|
eldifsn |
|- ( q e. ( Prime \ { 2 } ) <-> ( q e. Prime /\ q =/= 2 ) ) |
| 63 |
61 62
|
sylibr |
|- ( ( ( ( K e. NN /\ q e. Prime ) /\ m e. NN ) /\ q =/= 2 ) -> q e. ( Prime \ { 2 } ) ) |
| 64 |
63
|
adantr |
|- ( ( ( ( ( K e. NN /\ q e. Prime ) /\ m e. NN ) /\ q =/= 2 ) /\ ( ( 2 ^ ( 2 pCnt K ) ) x. ( m x. q ) ) = K ) -> q e. ( Prime \ { 2 } ) ) |
| 65 |
|
breq1 |
|- ( p = q -> ( p || K <-> q || K ) ) |
| 66 |
65
|
adantl |
|- ( ( ( ( ( ( K e. NN /\ q e. Prime ) /\ m e. NN ) /\ q =/= 2 ) /\ ( ( 2 ^ ( 2 pCnt K ) ) x. ( m x. q ) ) = K ) /\ p = q ) -> ( p || K <-> q || K ) ) |
| 67 |
54 50
|
nnmulcld |
|- ( ( ( K e. NN /\ q e. Prime ) /\ m e. NN ) -> ( ( 2 ^ ( 2 pCnt K ) ) x. m ) e. NN ) |
| 68 |
67
|
nnzd |
|- ( ( ( K e. NN /\ q e. Prime ) /\ m e. NN ) -> ( ( 2 ^ ( 2 pCnt K ) ) x. m ) e. ZZ ) |
| 69 |
44
|
nnzd |
|- ( q e. Prime -> q e. ZZ ) |
| 70 |
69
|
ad2antlr |
|- ( ( ( K e. NN /\ q e. Prime ) /\ m e. NN ) -> q e. ZZ ) |
| 71 |
68 70
|
jca |
|- ( ( ( K e. NN /\ q e. Prime ) /\ m e. NN ) -> ( ( ( 2 ^ ( 2 pCnt K ) ) x. m ) e. ZZ /\ q e. ZZ ) ) |
| 72 |
71
|
adantr |
|- ( ( ( ( K e. NN /\ q e. Prime ) /\ m e. NN ) /\ q =/= 2 ) -> ( ( ( 2 ^ ( 2 pCnt K ) ) x. m ) e. ZZ /\ q e. ZZ ) ) |
| 73 |
|
dvdsmul2 |
|- ( ( ( ( 2 ^ ( 2 pCnt K ) ) x. m ) e. ZZ /\ q e. ZZ ) -> q || ( ( ( 2 ^ ( 2 pCnt K ) ) x. m ) x. q ) ) |
| 74 |
72 73
|
syl |
|- ( ( ( ( K e. NN /\ q e. Prime ) /\ m e. NN ) /\ q =/= 2 ) -> q || ( ( ( 2 ^ ( 2 pCnt K ) ) x. m ) x. q ) ) |
| 75 |
|
2nn0 |
|- 2 e. NN0 |
| 76 |
75
|
a1i |
|- ( K e. NN -> 2 e. NN0 ) |
| 77 |
76 10
|
nn0expcld |
|- ( K e. NN -> ( 2 ^ ( 2 pCnt K ) ) e. NN0 ) |
| 78 |
77
|
ad2antrr |
|- ( ( ( K e. NN /\ q e. Prime ) /\ m e. NN ) -> ( 2 ^ ( 2 pCnt K ) ) e. NN0 ) |
| 79 |
78
|
nn0cnd |
|- ( ( ( K e. NN /\ q e. Prime ) /\ m e. NN ) -> ( 2 ^ ( 2 pCnt K ) ) e. CC ) |
| 80 |
|
nncn |
|- ( m e. NN -> m e. CC ) |
| 81 |
80
|
adantl |
|- ( ( ( K e. NN /\ q e. Prime ) /\ m e. NN ) -> m e. CC ) |
| 82 |
44
|
nncnd |
|- ( q e. Prime -> q e. CC ) |
| 83 |
82
|
ad2antlr |
|- ( ( ( K e. NN /\ q e. Prime ) /\ m e. NN ) -> q e. CC ) |
| 84 |
79 81 83
|
3jca |
|- ( ( ( K e. NN /\ q e. Prime ) /\ m e. NN ) -> ( ( 2 ^ ( 2 pCnt K ) ) e. CC /\ m e. CC /\ q e. CC ) ) |
| 85 |
84
|
adantr |
|- ( ( ( ( K e. NN /\ q e. Prime ) /\ m e. NN ) /\ q =/= 2 ) -> ( ( 2 ^ ( 2 pCnt K ) ) e. CC /\ m e. CC /\ q e. CC ) ) |
| 86 |
|
mulass |
|- ( ( ( 2 ^ ( 2 pCnt K ) ) e. CC /\ m e. CC /\ q e. CC ) -> ( ( ( 2 ^ ( 2 pCnt K ) ) x. m ) x. q ) = ( ( 2 ^ ( 2 pCnt K ) ) x. ( m x. q ) ) ) |
| 87 |
85 86
|
syl |
|- ( ( ( ( K e. NN /\ q e. Prime ) /\ m e. NN ) /\ q =/= 2 ) -> ( ( ( 2 ^ ( 2 pCnt K ) ) x. m ) x. q ) = ( ( 2 ^ ( 2 pCnt K ) ) x. ( m x. q ) ) ) |
| 88 |
74 87
|
breqtrd |
|- ( ( ( ( K e. NN /\ q e. Prime ) /\ m e. NN ) /\ q =/= 2 ) -> q || ( ( 2 ^ ( 2 pCnt K ) ) x. ( m x. q ) ) ) |
| 89 |
88
|
adantr |
|- ( ( ( ( ( K e. NN /\ q e. Prime ) /\ m e. NN ) /\ q =/= 2 ) /\ ( ( 2 ^ ( 2 pCnt K ) ) x. ( m x. q ) ) = K ) -> q || ( ( 2 ^ ( 2 pCnt K ) ) x. ( m x. q ) ) ) |
| 90 |
|
breq2 |
|- ( ( ( 2 ^ ( 2 pCnt K ) ) x. ( m x. q ) ) = K -> ( q || ( ( 2 ^ ( 2 pCnt K ) ) x. ( m x. q ) ) <-> q || K ) ) |
| 91 |
90
|
adantl |
|- ( ( ( ( ( K e. NN /\ q e. Prime ) /\ m e. NN ) /\ q =/= 2 ) /\ ( ( 2 ^ ( 2 pCnt K ) ) x. ( m x. q ) ) = K ) -> ( q || ( ( 2 ^ ( 2 pCnt K ) ) x. ( m x. q ) ) <-> q || K ) ) |
| 92 |
89 91
|
mpbid |
|- ( ( ( ( ( K e. NN /\ q e. Prime ) /\ m e. NN ) /\ q =/= 2 ) /\ ( ( 2 ^ ( 2 pCnt K ) ) x. ( m x. q ) ) = K ) -> q || K ) |
| 93 |
64 66 92
|
rspcedvd |
|- ( ( ( ( ( K e. NN /\ q e. Prime ) /\ m e. NN ) /\ q =/= 2 ) /\ ( ( 2 ^ ( 2 pCnt K ) ) x. ( m x. q ) ) = K ) -> E. p e. ( Prime \ { 2 } ) p || K ) |
| 94 |
93
|
a1d |
|- ( ( ( ( ( K e. NN /\ q e. Prime ) /\ m e. NN ) /\ q =/= 2 ) /\ ( ( 2 ^ ( 2 pCnt K ) ) x. ( m x. q ) ) = K ) -> ( -. E. n e. NN0 K = ( 2 ^ n ) -> E. p e. ( Prime \ { 2 } ) p || K ) ) |
| 95 |
94
|
exp31 |
|- ( ( ( K e. NN /\ q e. Prime ) /\ m e. NN ) -> ( q =/= 2 -> ( ( ( 2 ^ ( 2 pCnt K ) ) x. ( m x. q ) ) = K -> ( -. E. n e. NN0 K = ( 2 ^ n ) -> E. p e. ( Prime \ { 2 } ) p || K ) ) ) ) |
| 96 |
95
|
com23 |
|- ( ( ( K e. NN /\ q e. Prime ) /\ m e. NN ) -> ( ( ( 2 ^ ( 2 pCnt K ) ) x. ( m x. q ) ) = K -> ( q =/= 2 -> ( -. E. n e. NN0 K = ( 2 ^ n ) -> E. p e. ( Prime \ { 2 } ) p || K ) ) ) ) |
| 97 |
58 96
|
sylbid |
|- ( ( ( K e. NN /\ q e. Prime ) /\ m e. NN ) -> ( ( m x. q ) = ( K / ( 2 ^ ( 2 pCnt K ) ) ) -> ( q =/= 2 -> ( -. E. n e. NN0 K = ( 2 ^ n ) -> E. p e. ( Prime \ { 2 } ) p || K ) ) ) ) |
| 98 |
97
|
rexlimdva |
|- ( ( K e. NN /\ q e. Prime ) -> ( E. m e. NN ( m x. q ) = ( K / ( 2 ^ ( 2 pCnt K ) ) ) -> ( q =/= 2 -> ( -. E. n e. NN0 K = ( 2 ^ n ) -> E. p e. ( Prime \ { 2 } ) p || K ) ) ) ) |
| 99 |
47 98
|
sylbid |
|- ( ( K e. NN /\ q e. Prime ) -> ( q || ( K / ( 2 ^ ( 2 pCnt K ) ) ) -> ( q =/= 2 -> ( -. E. n e. NN0 K = ( 2 ^ n ) -> E. p e. ( Prime \ { 2 } ) p || K ) ) ) ) |
| 100 |
43 99
|
syldd |
|- ( ( K e. NN /\ q e. Prime ) -> ( q || ( K / ( 2 ^ ( 2 pCnt K ) ) ) -> ( -. 2 || ( K / ( 2 ^ ( 2 pCnt K ) ) ) -> ( -. E. n e. NN0 K = ( 2 ^ n ) -> E. p e. ( Prime \ { 2 } ) p || K ) ) ) ) |
| 101 |
100
|
rexlimdva |
|- ( K e. NN -> ( E. q e. Prime q || ( K / ( 2 ^ ( 2 pCnt K ) ) ) -> ( -. 2 || ( K / ( 2 ^ ( 2 pCnt K ) ) ) -> ( -. E. n e. NN0 K = ( 2 ^ n ) -> E. p e. ( Prime \ { 2 } ) p || K ) ) ) ) |
| 102 |
101
|
com12 |
|- ( E. q e. Prime q || ( K / ( 2 ^ ( 2 pCnt K ) ) ) -> ( K e. NN -> ( -. 2 || ( K / ( 2 ^ ( 2 pCnt K ) ) ) -> ( -. E. n e. NN0 K = ( 2 ^ n ) -> E. p e. ( Prime \ { 2 } ) p || K ) ) ) ) |
| 103 |
102
|
impd |
|- ( E. q e. Prime q || ( K / ( 2 ^ ( 2 pCnt K ) ) ) -> ( ( K e. NN /\ -. 2 || ( K / ( 2 ^ ( 2 pCnt K ) ) ) ) -> ( -. E. n e. NN0 K = ( 2 ^ n ) -> E. p e. ( Prime \ { 2 } ) p || K ) ) ) |
| 104 |
38 103
|
syl |
|- ( ( K / ( 2 ^ ( 2 pCnt K ) ) ) e. ( ZZ>= ` 2 ) -> ( ( K e. NN /\ -. 2 || ( K / ( 2 ^ ( 2 pCnt K ) ) ) ) -> ( -. E. n e. NN0 K = ( 2 ^ n ) -> E. p e. ( Prime \ { 2 } ) p || K ) ) ) |
| 105 |
37 104
|
jaoi |
|- ( ( ( K / ( 2 ^ ( 2 pCnt K ) ) ) = 1 \/ ( K / ( 2 ^ ( 2 pCnt K ) ) ) e. ( ZZ>= ` 2 ) ) -> ( ( K e. NN /\ -. 2 || ( K / ( 2 ^ ( 2 pCnt K ) ) ) ) -> ( -. E. n e. NN0 K = ( 2 ^ n ) -> E. p e. ( Prime \ { 2 } ) p || K ) ) ) |
| 106 |
15 105
|
sylbi |
|- ( ( K / ( 2 ^ ( 2 pCnt K ) ) ) e. NN -> ( ( K e. NN /\ -. 2 || ( K / ( 2 ^ ( 2 pCnt K ) ) ) ) -> ( -. E. n e. NN0 K = ( 2 ^ n ) -> E. p e. ( Prime \ { 2 } ) p || K ) ) ) |
| 107 |
106
|
com12 |
|- ( ( K e. NN /\ -. 2 || ( K / ( 2 ^ ( 2 pCnt K ) ) ) ) -> ( ( K / ( 2 ^ ( 2 pCnt K ) ) ) e. NN -> ( -. E. n e. NN0 K = ( 2 ^ n ) -> E. p e. ( Prime \ { 2 } ) p || K ) ) ) |
| 108 |
14 107
|
sylbid |
|- ( ( K e. NN /\ -. 2 || ( K / ( 2 ^ ( 2 pCnt K ) ) ) ) -> ( ( 2 ^ ( 2 pCnt K ) ) || K -> ( -. E. n e. NN0 K = ( 2 ^ n ) -> E. p e. ( Prime \ { 2 } ) p || K ) ) ) |
| 109 |
108
|
ex |
|- ( K e. NN -> ( -. 2 || ( K / ( 2 ^ ( 2 pCnt K ) ) ) -> ( ( 2 ^ ( 2 pCnt K ) ) || K -> ( -. E. n e. NN0 K = ( 2 ^ n ) -> E. p e. ( Prime \ { 2 } ) p || K ) ) ) ) |
| 110 |
3 5 109
|
mp2d |
|- ( K e. NN -> ( -. E. n e. NN0 K = ( 2 ^ n ) -> E. p e. ( Prime \ { 2 } ) p || K ) ) |
| 111 |
110
|
imp |
|- ( ( K e. NN /\ -. E. n e. NN0 K = ( 2 ^ n ) ) -> E. p e. ( Prime \ { 2 } ) p || K ) |