Metamath Proof Explorer


Theorem oddprmdvds

Description: Every positive integer which is not a power of two is divisible by an odd prime number. (Contributed by AV, 6-Aug-2021)

Ref Expression
Assertion oddprmdvds K¬n0K=2np2pK

Proof

Step Hyp Ref Expression
1 2prm 2
2 pcndvds2 2K¬2K22pCntK
3 1 2 mpan K¬2K22pCntK
4 pcdvds 2K22pCntKK
5 1 4 mpan K22pCntKK
6 2nn 2
7 6 a1i K2
8 1 a1i K2
9 id KK
10 8 9 pccld K2pCntK0
11 7 10 nnexpcld K22pCntK
12 nndivdvds K22pCntK22pCntKKK22pCntK
13 11 12 mpdan K22pCntKKK22pCntK
14 13 adantr K¬2K22pCntK22pCntKKK22pCntK
15 elnn1uz2 K22pCntKK22pCntK=1K22pCntK2
16 nncn KK
17 nncn 22pCntK22pCntK
18 nnne0 22pCntK22pCntK0
19 17 18 jca 22pCntK22pCntK22pCntK0
20 11 19 syl K22pCntK22pCntK0
21 3anass K22pCntK22pCntK0K22pCntK22pCntK0
22 16 20 21 sylanbrc KK22pCntK22pCntK0
23 22 adantr K¬2K22pCntKK22pCntK22pCntK0
24 diveq1 K22pCntK22pCntK0K22pCntK=1K=22pCntK
25 23 24 syl K¬2K22pCntKK22pCntK=1K=22pCntK
26 10 adantr KK=22pCntK2pCntK0
27 oveq2 n=2pCntK2n=22pCntK
28 27 eqeq2d n=2pCntKK=2nK=22pCntK
29 28 adantl KK=22pCntKn=2pCntKK=2nK=22pCntK
30 simpr KK=22pCntKK=22pCntK
31 26 29 30 rspcedvd KK=22pCntKn0K=2n
32 31 ex KK=22pCntKn0K=2n
33 pm2.24 n0K=2n¬n0K=2np2pK
34 32 33 syl6 KK=22pCntK¬n0K=2np2pK
35 34 adantr K¬2K22pCntKK=22pCntK¬n0K=2np2pK
36 25 35 sylbid K¬2K22pCntKK22pCntK=1¬n0K=2np2pK
37 36 com12 K22pCntK=1K¬2K22pCntK¬n0K=2np2pK
38 exprmfct K22pCntK2qqK22pCntK
39 breq1 q=2qK22pCntK2K22pCntK
40 39 biimpcd qK22pCntKq=22K22pCntK
41 40 adantl KqqK22pCntKq=22K22pCntK
42 41 necon3bd KqqK22pCntK¬2K22pCntKq2
43 42 ex KqqK22pCntK¬2K22pCntKq2
44 prmnn qq
45 5 13 mpbid KK22pCntK
46 nndivides qK22pCntKqK22pCntKmmq=K22pCntK
47 44 45 46 syl2anr KqqK22pCntKmmq=K22pCntK
48 eqcom mq=K22pCntKK22pCntK=mq
49 16 ad2antrr KqmK
50 simpr Kqmm
51 44 ad2antlr Kqmq
52 50 51 nnmulcld Kqmmq
53 52 nncnd Kqmmq
54 11 ad2antrr Kqm22pCntK
55 54 19 syl Kqm22pCntK22pCntK0
56 divmul Kmq22pCntK22pCntK0K22pCntK=mq22pCntKmq=K
57 49 53 55 56 syl3anc KqmK22pCntK=mq22pCntKmq=K
58 48 57 bitrid Kqmmq=K22pCntK22pCntKmq=K
59 simpr Kqq
60 59 adantr Kqmq
61 60 anim1i Kqmq2qq2
62 eldifsn q2qq2
63 61 62 sylibr Kqmq2q2
64 63 adantr Kqmq222pCntKmq=Kq2
65 breq1 p=qpKqK
66 65 adantl Kqmq222pCntKmq=Kp=qpKqK
67 54 50 nnmulcld Kqm22pCntKm
68 67 nnzd Kqm22pCntKm
69 44 nnzd qq
70 69 ad2antlr Kqmq
71 68 70 jca Kqm22pCntKmq
72 71 adantr Kqmq222pCntKmq
73 dvdsmul2 22pCntKmqq22pCntKmq
74 72 73 syl Kqmq2q22pCntKmq
75 2nn0 20
76 75 a1i K20
77 76 10 nn0expcld K22pCntK0
78 77 ad2antrr Kqm22pCntK0
79 78 nn0cnd Kqm22pCntK
80 nncn mm
81 80 adantl Kqmm
82 44 nncnd qq
83 82 ad2antlr Kqmq
84 79 81 83 3jca Kqm22pCntKmq
85 84 adantr Kqmq222pCntKmq
86 mulass 22pCntKmq22pCntKmq=22pCntKmq
87 85 86 syl Kqmq222pCntKmq=22pCntKmq
88 74 87 breqtrd Kqmq2q22pCntKmq
89 88 adantr Kqmq222pCntKmq=Kq22pCntKmq
90 breq2 22pCntKmq=Kq22pCntKmqqK
91 90 adantl Kqmq222pCntKmq=Kq22pCntKmqqK
92 89 91 mpbid Kqmq222pCntKmq=KqK
93 64 66 92 rspcedvd Kqmq222pCntKmq=Kp2pK
94 93 a1d Kqmq222pCntKmq=K¬n0K=2np2pK
95 94 exp31 Kqmq222pCntKmq=K¬n0K=2np2pK
96 95 com23 Kqm22pCntKmq=Kq2¬n0K=2np2pK
97 58 96 sylbid Kqmmq=K22pCntKq2¬n0K=2np2pK
98 97 rexlimdva Kqmmq=K22pCntKq2¬n0K=2np2pK
99 47 98 sylbid KqqK22pCntKq2¬n0K=2np2pK
100 43 99 syldd KqqK22pCntK¬2K22pCntK¬n0K=2np2pK
101 100 rexlimdva KqqK22pCntK¬2K22pCntK¬n0K=2np2pK
102 101 com12 qqK22pCntKK¬2K22pCntK¬n0K=2np2pK
103 102 impd qqK22pCntKK¬2K22pCntK¬n0K=2np2pK
104 38 103 syl K22pCntK2K¬2K22pCntK¬n0K=2np2pK
105 37 104 jaoi K22pCntK=1K22pCntK2K¬2K22pCntK¬n0K=2np2pK
106 15 105 sylbi K22pCntKK¬2K22pCntK¬n0K=2np2pK
107 106 com12 K¬2K22pCntKK22pCntK¬n0K=2np2pK
108 14 107 sylbid K¬2K22pCntK22pCntKK¬n0K=2np2pK
109 108 ex K¬2K22pCntK22pCntKK¬n0K=2np2pK
110 3 5 109 mp2d K¬n0K=2np2pK
111 110 imp K¬n0K=2np2pK