| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvdsnprmd.g |
⊢ ( 𝜑 → 1 < 𝐴 ) |
| 2 |
|
dvdsnprmd.l |
⊢ ( 𝜑 → 𝐴 < 𝑁 ) |
| 3 |
|
dvdsnprmd.d |
⊢ ( 𝜑 → 𝐴 ∥ 𝑁 ) |
| 4 |
|
dvdszrcl |
⊢ ( 𝐴 ∥ 𝑁 → ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) |
| 5 |
|
divides |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝐴 ∥ 𝑁 ↔ ∃ 𝑘 ∈ ℤ ( 𝑘 · 𝐴 ) = 𝑁 ) ) |
| 6 |
3 4 5
|
3syl |
⊢ ( 𝜑 → ( 𝐴 ∥ 𝑁 ↔ ∃ 𝑘 ∈ ℤ ( 𝑘 · 𝐴 ) = 𝑁 ) ) |
| 7 |
|
2z |
⊢ 2 ∈ ℤ |
| 8 |
7
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℤ ) ∧ ( 𝑘 · 𝐴 ) = 𝑁 ) → 2 ∈ ℤ ) |
| 9 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℤ ) ∧ ( 𝑘 · 𝐴 ) = 𝑁 ) → 𝑘 ∈ ℤ ) |
| 10 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℤ ) → 𝐴 < 𝑁 ) |
| 11 |
10
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℤ ) ∧ ( 𝑘 · 𝐴 ) = 𝑁 ) → 𝐴 < 𝑁 ) |
| 12 |
|
breq2 |
⊢ ( ( 𝑘 · 𝐴 ) = 𝑁 → ( 𝐴 < ( 𝑘 · 𝐴 ) ↔ 𝐴 < 𝑁 ) ) |
| 13 |
12
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℤ ) ∧ ( 𝑘 · 𝐴 ) = 𝑁 ) → ( 𝐴 < ( 𝑘 · 𝐴 ) ↔ 𝐴 < 𝑁 ) ) |
| 14 |
11 13
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℤ ) ∧ ( 𝑘 · 𝐴 ) = 𝑁 ) → 𝐴 < ( 𝑘 · 𝐴 ) ) |
| 15 |
|
zre |
⊢ ( 𝐴 ∈ ℤ → 𝐴 ∈ ℝ ) |
| 16 |
15
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 1 < 𝐴 ∧ 𝑘 ∈ ℤ ) → 𝐴 ∈ ℝ ) |
| 17 |
|
zre |
⊢ ( 𝑘 ∈ ℤ → 𝑘 ∈ ℝ ) |
| 18 |
17
|
3ad2ant3 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 1 < 𝐴 ∧ 𝑘 ∈ ℤ ) → 𝑘 ∈ ℝ ) |
| 19 |
|
0lt1 |
⊢ 0 < 1 |
| 20 |
|
0red |
⊢ ( 𝐴 ∈ ℤ → 0 ∈ ℝ ) |
| 21 |
|
1red |
⊢ ( 𝐴 ∈ ℤ → 1 ∈ ℝ ) |
| 22 |
|
lttr |
⊢ ( ( 0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( ( 0 < 1 ∧ 1 < 𝐴 ) → 0 < 𝐴 ) ) |
| 23 |
20 21 15 22
|
syl3anc |
⊢ ( 𝐴 ∈ ℤ → ( ( 0 < 1 ∧ 1 < 𝐴 ) → 0 < 𝐴 ) ) |
| 24 |
19 23
|
mpani |
⊢ ( 𝐴 ∈ ℤ → ( 1 < 𝐴 → 0 < 𝐴 ) ) |
| 25 |
24
|
imp |
⊢ ( ( 𝐴 ∈ ℤ ∧ 1 < 𝐴 ) → 0 < 𝐴 ) |
| 26 |
25
|
3adant3 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 1 < 𝐴 ∧ 𝑘 ∈ ℤ ) → 0 < 𝐴 ) |
| 27 |
16 18 26
|
3jca |
⊢ ( ( 𝐴 ∈ ℤ ∧ 1 < 𝐴 ∧ 𝑘 ∈ ℤ ) → ( 𝐴 ∈ ℝ ∧ 𝑘 ∈ ℝ ∧ 0 < 𝐴 ) ) |
| 28 |
27
|
3exp |
⊢ ( 𝐴 ∈ ℤ → ( 1 < 𝐴 → ( 𝑘 ∈ ℤ → ( 𝐴 ∈ ℝ ∧ 𝑘 ∈ ℝ ∧ 0 < 𝐴 ) ) ) ) |
| 29 |
28
|
adantr |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 1 < 𝐴 → ( 𝑘 ∈ ℤ → ( 𝐴 ∈ ℝ ∧ 𝑘 ∈ ℝ ∧ 0 < 𝐴 ) ) ) ) |
| 30 |
3 4 29
|
3syl |
⊢ ( 𝜑 → ( 1 < 𝐴 → ( 𝑘 ∈ ℤ → ( 𝐴 ∈ ℝ ∧ 𝑘 ∈ ℝ ∧ 0 < 𝐴 ) ) ) ) |
| 31 |
1 30
|
mpd |
⊢ ( 𝜑 → ( 𝑘 ∈ ℤ → ( 𝐴 ∈ ℝ ∧ 𝑘 ∈ ℝ ∧ 0 < 𝐴 ) ) ) |
| 32 |
31
|
imp |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℤ ) → ( 𝐴 ∈ ℝ ∧ 𝑘 ∈ ℝ ∧ 0 < 𝐴 ) ) |
| 33 |
32
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℤ ) ∧ ( 𝑘 · 𝐴 ) = 𝑁 ) → ( 𝐴 ∈ ℝ ∧ 𝑘 ∈ ℝ ∧ 0 < 𝐴 ) ) |
| 34 |
|
ltmulgt12 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑘 ∈ ℝ ∧ 0 < 𝐴 ) → ( 1 < 𝑘 ↔ 𝐴 < ( 𝑘 · 𝐴 ) ) ) |
| 35 |
33 34
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℤ ) ∧ ( 𝑘 · 𝐴 ) = 𝑁 ) → ( 1 < 𝑘 ↔ 𝐴 < ( 𝑘 · 𝐴 ) ) ) |
| 36 |
14 35
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℤ ) ∧ ( 𝑘 · 𝐴 ) = 𝑁 ) → 1 < 𝑘 ) |
| 37 |
|
df-2 |
⊢ 2 = ( 1 + 1 ) |
| 38 |
37
|
breq1i |
⊢ ( 2 ≤ 𝑘 ↔ ( 1 + 1 ) ≤ 𝑘 ) |
| 39 |
|
1zzd |
⊢ ( 𝑘 ∈ ℤ → 1 ∈ ℤ ) |
| 40 |
|
zltp1le |
⊢ ( ( 1 ∈ ℤ ∧ 𝑘 ∈ ℤ ) → ( 1 < 𝑘 ↔ ( 1 + 1 ) ≤ 𝑘 ) ) |
| 41 |
39 40
|
mpancom |
⊢ ( 𝑘 ∈ ℤ → ( 1 < 𝑘 ↔ ( 1 + 1 ) ≤ 𝑘 ) ) |
| 42 |
41
|
bicomd |
⊢ ( 𝑘 ∈ ℤ → ( ( 1 + 1 ) ≤ 𝑘 ↔ 1 < 𝑘 ) ) |
| 43 |
42
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℤ ) → ( ( 1 + 1 ) ≤ 𝑘 ↔ 1 < 𝑘 ) ) |
| 44 |
43
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℤ ) ∧ ( 𝑘 · 𝐴 ) = 𝑁 ) → ( ( 1 + 1 ) ≤ 𝑘 ↔ 1 < 𝑘 ) ) |
| 45 |
38 44
|
bitrid |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℤ ) ∧ ( 𝑘 · 𝐴 ) = 𝑁 ) → ( 2 ≤ 𝑘 ↔ 1 < 𝑘 ) ) |
| 46 |
36 45
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℤ ) ∧ ( 𝑘 · 𝐴 ) = 𝑁 ) → 2 ≤ 𝑘 ) |
| 47 |
|
eluz2 |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 2 ) ↔ ( 2 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 2 ≤ 𝑘 ) ) |
| 48 |
8 9 46 47
|
syl3anbrc |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℤ ) ∧ ( 𝑘 · 𝐴 ) = 𝑁 ) → 𝑘 ∈ ( ℤ≥ ‘ 2 ) ) |
| 49 |
7
|
a1i |
⊢ ( ( 𝐴 ∈ ℤ ∧ 1 < 𝐴 ) → 2 ∈ ℤ ) |
| 50 |
|
simpl |
⊢ ( ( 𝐴 ∈ ℤ ∧ 1 < 𝐴 ) → 𝐴 ∈ ℤ ) |
| 51 |
|
1zzd |
⊢ ( 𝐴 ∈ ℤ → 1 ∈ ℤ ) |
| 52 |
|
zltp1le |
⊢ ( ( 1 ∈ ℤ ∧ 𝐴 ∈ ℤ ) → ( 1 < 𝐴 ↔ ( 1 + 1 ) ≤ 𝐴 ) ) |
| 53 |
51 52
|
mpancom |
⊢ ( 𝐴 ∈ ℤ → ( 1 < 𝐴 ↔ ( 1 + 1 ) ≤ 𝐴 ) ) |
| 54 |
53
|
biimpa |
⊢ ( ( 𝐴 ∈ ℤ ∧ 1 < 𝐴 ) → ( 1 + 1 ) ≤ 𝐴 ) |
| 55 |
37
|
breq1i |
⊢ ( 2 ≤ 𝐴 ↔ ( 1 + 1 ) ≤ 𝐴 ) |
| 56 |
54 55
|
sylibr |
⊢ ( ( 𝐴 ∈ ℤ ∧ 1 < 𝐴 ) → 2 ≤ 𝐴 ) |
| 57 |
49 50 56
|
3jca |
⊢ ( ( 𝐴 ∈ ℤ ∧ 1 < 𝐴 ) → ( 2 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 2 ≤ 𝐴 ) ) |
| 58 |
57
|
ex |
⊢ ( 𝐴 ∈ ℤ → ( 1 < 𝐴 → ( 2 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 2 ≤ 𝐴 ) ) ) |
| 59 |
58
|
adantr |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 1 < 𝐴 → ( 2 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 2 ≤ 𝐴 ) ) ) |
| 60 |
3 4 59
|
3syl |
⊢ ( 𝜑 → ( 1 < 𝐴 → ( 2 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 2 ≤ 𝐴 ) ) ) |
| 61 |
1 60
|
mpd |
⊢ ( 𝜑 → ( 2 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 2 ≤ 𝐴 ) ) |
| 62 |
|
eluz2 |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ↔ ( 2 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 2 ≤ 𝐴 ) ) |
| 63 |
61 62
|
sylibr |
⊢ ( 𝜑 → 𝐴 ∈ ( ℤ≥ ‘ 2 ) ) |
| 64 |
63
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℤ ) → 𝐴 ∈ ( ℤ≥ ‘ 2 ) ) |
| 65 |
64
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℤ ) ∧ ( 𝑘 · 𝐴 ) = 𝑁 ) → 𝐴 ∈ ( ℤ≥ ‘ 2 ) ) |
| 66 |
|
nprm |
⊢ ( ( 𝑘 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐴 ∈ ( ℤ≥ ‘ 2 ) ) → ¬ ( 𝑘 · 𝐴 ) ∈ ℙ ) |
| 67 |
48 65 66
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℤ ) ∧ ( 𝑘 · 𝐴 ) = 𝑁 ) → ¬ ( 𝑘 · 𝐴 ) ∈ ℙ ) |
| 68 |
|
eleq1 |
⊢ ( ( 𝑘 · 𝐴 ) = 𝑁 → ( ( 𝑘 · 𝐴 ) ∈ ℙ ↔ 𝑁 ∈ ℙ ) ) |
| 69 |
68
|
notbid |
⊢ ( ( 𝑘 · 𝐴 ) = 𝑁 → ( ¬ ( 𝑘 · 𝐴 ) ∈ ℙ ↔ ¬ 𝑁 ∈ ℙ ) ) |
| 70 |
69
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℤ ) ∧ ( 𝑘 · 𝐴 ) = 𝑁 ) → ( ¬ ( 𝑘 · 𝐴 ) ∈ ℙ ↔ ¬ 𝑁 ∈ ℙ ) ) |
| 71 |
67 70
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℤ ) ∧ ( 𝑘 · 𝐴 ) = 𝑁 ) → ¬ 𝑁 ∈ ℙ ) |
| 72 |
71
|
rexlimdva2 |
⊢ ( 𝜑 → ( ∃ 𝑘 ∈ ℤ ( 𝑘 · 𝐴 ) = 𝑁 → ¬ 𝑁 ∈ ℙ ) ) |
| 73 |
6 72
|
sylbid |
⊢ ( 𝜑 → ( 𝐴 ∥ 𝑁 → ¬ 𝑁 ∈ ℙ ) ) |
| 74 |
3 73
|
mpd |
⊢ ( 𝜑 → ¬ 𝑁 ∈ ℙ ) |