| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2nn | ⊢ 2  ∈  ℕ | 
						
							| 2 |  | dvdsprime | ⊢ ( ( 𝑃  ∈  ℙ  ∧  2  ∈  ℕ )  →  ( 2  ∥  𝑃  ↔  ( 2  =  𝑃  ∨  2  =  1 ) ) ) | 
						
							| 3 | 1 2 | mpan2 | ⊢ ( 𝑃  ∈  ℙ  →  ( 2  ∥  𝑃  ↔  ( 2  =  𝑃  ∨  2  =  1 ) ) ) | 
						
							| 4 |  | eqcom | ⊢ ( 2  =  𝑃  ↔  𝑃  =  2 ) | 
						
							| 5 | 4 | biimpi | ⊢ ( 2  =  𝑃  →  𝑃  =  2 ) | 
						
							| 6 |  | 1ne2 | ⊢ 1  ≠  2 | 
						
							| 7 |  | necom | ⊢ ( 1  ≠  2  ↔  2  ≠  1 ) | 
						
							| 8 |  | eqneqall | ⊢ ( 2  =  1  →  ( 2  ≠  1  →  𝑃  =  2 ) ) | 
						
							| 9 | 8 | com12 | ⊢ ( 2  ≠  1  →  ( 2  =  1  →  𝑃  =  2 ) ) | 
						
							| 10 | 7 9 | sylbi | ⊢ ( 1  ≠  2  →  ( 2  =  1  →  𝑃  =  2 ) ) | 
						
							| 11 | 6 10 | ax-mp | ⊢ ( 2  =  1  →  𝑃  =  2 ) | 
						
							| 12 | 5 11 | jaoi | ⊢ ( ( 2  =  𝑃  ∨  2  =  1 )  →  𝑃  =  2 ) | 
						
							| 13 | 3 12 | biimtrdi | ⊢ ( 𝑃  ∈  ℙ  →  ( 2  ∥  𝑃  →  𝑃  =  2 ) ) | 
						
							| 14 | 13 | con3d | ⊢ ( 𝑃  ∈  ℙ  →  ( ¬  𝑃  =  2  →  ¬  2  ∥  𝑃 ) ) | 
						
							| 15 | 14 | orrd | ⊢ ( 𝑃  ∈  ℙ  →  ( 𝑃  =  2  ∨  ¬  2  ∥  𝑃 ) ) |