| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2nn |  |-  2 e. NN | 
						
							| 2 |  | dvdsprime |  |-  ( ( P e. Prime /\ 2 e. NN ) -> ( 2 || P <-> ( 2 = P \/ 2 = 1 ) ) ) | 
						
							| 3 | 1 2 | mpan2 |  |-  ( P e. Prime -> ( 2 || P <-> ( 2 = P \/ 2 = 1 ) ) ) | 
						
							| 4 |  | eqcom |  |-  ( 2 = P <-> P = 2 ) | 
						
							| 5 | 4 | biimpi |  |-  ( 2 = P -> P = 2 ) | 
						
							| 6 |  | 1ne2 |  |-  1 =/= 2 | 
						
							| 7 |  | necom |  |-  ( 1 =/= 2 <-> 2 =/= 1 ) | 
						
							| 8 |  | eqneqall |  |-  ( 2 = 1 -> ( 2 =/= 1 -> P = 2 ) ) | 
						
							| 9 | 8 | com12 |  |-  ( 2 =/= 1 -> ( 2 = 1 -> P = 2 ) ) | 
						
							| 10 | 7 9 | sylbi |  |-  ( 1 =/= 2 -> ( 2 = 1 -> P = 2 ) ) | 
						
							| 11 | 6 10 | ax-mp |  |-  ( 2 = 1 -> P = 2 ) | 
						
							| 12 | 5 11 | jaoi |  |-  ( ( 2 = P \/ 2 = 1 ) -> P = 2 ) | 
						
							| 13 | 3 12 | biimtrdi |  |-  ( P e. Prime -> ( 2 || P -> P = 2 ) ) | 
						
							| 14 | 13 | con3d |  |-  ( P e. Prime -> ( -. P = 2 -> -. 2 || P ) ) | 
						
							| 15 | 14 | orrd |  |-  ( P e. Prime -> ( P = 2 \/ -. 2 || P ) ) |