| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvdsnprmd.g |
|- ( ph -> 1 < A ) |
| 2 |
|
dvdsnprmd.l |
|- ( ph -> A < N ) |
| 3 |
|
dvdsnprmd.d |
|- ( ph -> A || N ) |
| 4 |
|
dvdszrcl |
|- ( A || N -> ( A e. ZZ /\ N e. ZZ ) ) |
| 5 |
|
divides |
|- ( ( A e. ZZ /\ N e. ZZ ) -> ( A || N <-> E. k e. ZZ ( k x. A ) = N ) ) |
| 6 |
3 4 5
|
3syl |
|- ( ph -> ( A || N <-> E. k e. ZZ ( k x. A ) = N ) ) |
| 7 |
|
2z |
|- 2 e. ZZ |
| 8 |
7
|
a1i |
|- ( ( ( ph /\ k e. ZZ ) /\ ( k x. A ) = N ) -> 2 e. ZZ ) |
| 9 |
|
simplr |
|- ( ( ( ph /\ k e. ZZ ) /\ ( k x. A ) = N ) -> k e. ZZ ) |
| 10 |
2
|
adantr |
|- ( ( ph /\ k e. ZZ ) -> A < N ) |
| 11 |
10
|
adantr |
|- ( ( ( ph /\ k e. ZZ ) /\ ( k x. A ) = N ) -> A < N ) |
| 12 |
|
breq2 |
|- ( ( k x. A ) = N -> ( A < ( k x. A ) <-> A < N ) ) |
| 13 |
12
|
adantl |
|- ( ( ( ph /\ k e. ZZ ) /\ ( k x. A ) = N ) -> ( A < ( k x. A ) <-> A < N ) ) |
| 14 |
11 13
|
mpbird |
|- ( ( ( ph /\ k e. ZZ ) /\ ( k x. A ) = N ) -> A < ( k x. A ) ) |
| 15 |
|
zre |
|- ( A e. ZZ -> A e. RR ) |
| 16 |
15
|
3ad2ant1 |
|- ( ( A e. ZZ /\ 1 < A /\ k e. ZZ ) -> A e. RR ) |
| 17 |
|
zre |
|- ( k e. ZZ -> k e. RR ) |
| 18 |
17
|
3ad2ant3 |
|- ( ( A e. ZZ /\ 1 < A /\ k e. ZZ ) -> k e. RR ) |
| 19 |
|
0lt1 |
|- 0 < 1 |
| 20 |
|
0red |
|- ( A e. ZZ -> 0 e. RR ) |
| 21 |
|
1red |
|- ( A e. ZZ -> 1 e. RR ) |
| 22 |
|
lttr |
|- ( ( 0 e. RR /\ 1 e. RR /\ A e. RR ) -> ( ( 0 < 1 /\ 1 < A ) -> 0 < A ) ) |
| 23 |
20 21 15 22
|
syl3anc |
|- ( A e. ZZ -> ( ( 0 < 1 /\ 1 < A ) -> 0 < A ) ) |
| 24 |
19 23
|
mpani |
|- ( A e. ZZ -> ( 1 < A -> 0 < A ) ) |
| 25 |
24
|
imp |
|- ( ( A e. ZZ /\ 1 < A ) -> 0 < A ) |
| 26 |
25
|
3adant3 |
|- ( ( A e. ZZ /\ 1 < A /\ k e. ZZ ) -> 0 < A ) |
| 27 |
16 18 26
|
3jca |
|- ( ( A e. ZZ /\ 1 < A /\ k e. ZZ ) -> ( A e. RR /\ k e. RR /\ 0 < A ) ) |
| 28 |
27
|
3exp |
|- ( A e. ZZ -> ( 1 < A -> ( k e. ZZ -> ( A e. RR /\ k e. RR /\ 0 < A ) ) ) ) |
| 29 |
28
|
adantr |
|- ( ( A e. ZZ /\ N e. ZZ ) -> ( 1 < A -> ( k e. ZZ -> ( A e. RR /\ k e. RR /\ 0 < A ) ) ) ) |
| 30 |
3 4 29
|
3syl |
|- ( ph -> ( 1 < A -> ( k e. ZZ -> ( A e. RR /\ k e. RR /\ 0 < A ) ) ) ) |
| 31 |
1 30
|
mpd |
|- ( ph -> ( k e. ZZ -> ( A e. RR /\ k e. RR /\ 0 < A ) ) ) |
| 32 |
31
|
imp |
|- ( ( ph /\ k e. ZZ ) -> ( A e. RR /\ k e. RR /\ 0 < A ) ) |
| 33 |
32
|
adantr |
|- ( ( ( ph /\ k e. ZZ ) /\ ( k x. A ) = N ) -> ( A e. RR /\ k e. RR /\ 0 < A ) ) |
| 34 |
|
ltmulgt12 |
|- ( ( A e. RR /\ k e. RR /\ 0 < A ) -> ( 1 < k <-> A < ( k x. A ) ) ) |
| 35 |
33 34
|
syl |
|- ( ( ( ph /\ k e. ZZ ) /\ ( k x. A ) = N ) -> ( 1 < k <-> A < ( k x. A ) ) ) |
| 36 |
14 35
|
mpbird |
|- ( ( ( ph /\ k e. ZZ ) /\ ( k x. A ) = N ) -> 1 < k ) |
| 37 |
|
df-2 |
|- 2 = ( 1 + 1 ) |
| 38 |
37
|
breq1i |
|- ( 2 <_ k <-> ( 1 + 1 ) <_ k ) |
| 39 |
|
1zzd |
|- ( k e. ZZ -> 1 e. ZZ ) |
| 40 |
|
zltp1le |
|- ( ( 1 e. ZZ /\ k e. ZZ ) -> ( 1 < k <-> ( 1 + 1 ) <_ k ) ) |
| 41 |
39 40
|
mpancom |
|- ( k e. ZZ -> ( 1 < k <-> ( 1 + 1 ) <_ k ) ) |
| 42 |
41
|
bicomd |
|- ( k e. ZZ -> ( ( 1 + 1 ) <_ k <-> 1 < k ) ) |
| 43 |
42
|
adantl |
|- ( ( ph /\ k e. ZZ ) -> ( ( 1 + 1 ) <_ k <-> 1 < k ) ) |
| 44 |
43
|
adantr |
|- ( ( ( ph /\ k e. ZZ ) /\ ( k x. A ) = N ) -> ( ( 1 + 1 ) <_ k <-> 1 < k ) ) |
| 45 |
38 44
|
bitrid |
|- ( ( ( ph /\ k e. ZZ ) /\ ( k x. A ) = N ) -> ( 2 <_ k <-> 1 < k ) ) |
| 46 |
36 45
|
mpbird |
|- ( ( ( ph /\ k e. ZZ ) /\ ( k x. A ) = N ) -> 2 <_ k ) |
| 47 |
|
eluz2 |
|- ( k e. ( ZZ>= ` 2 ) <-> ( 2 e. ZZ /\ k e. ZZ /\ 2 <_ k ) ) |
| 48 |
8 9 46 47
|
syl3anbrc |
|- ( ( ( ph /\ k e. ZZ ) /\ ( k x. A ) = N ) -> k e. ( ZZ>= ` 2 ) ) |
| 49 |
7
|
a1i |
|- ( ( A e. ZZ /\ 1 < A ) -> 2 e. ZZ ) |
| 50 |
|
simpl |
|- ( ( A e. ZZ /\ 1 < A ) -> A e. ZZ ) |
| 51 |
|
1zzd |
|- ( A e. ZZ -> 1 e. ZZ ) |
| 52 |
|
zltp1le |
|- ( ( 1 e. ZZ /\ A e. ZZ ) -> ( 1 < A <-> ( 1 + 1 ) <_ A ) ) |
| 53 |
51 52
|
mpancom |
|- ( A e. ZZ -> ( 1 < A <-> ( 1 + 1 ) <_ A ) ) |
| 54 |
53
|
biimpa |
|- ( ( A e. ZZ /\ 1 < A ) -> ( 1 + 1 ) <_ A ) |
| 55 |
37
|
breq1i |
|- ( 2 <_ A <-> ( 1 + 1 ) <_ A ) |
| 56 |
54 55
|
sylibr |
|- ( ( A e. ZZ /\ 1 < A ) -> 2 <_ A ) |
| 57 |
49 50 56
|
3jca |
|- ( ( A e. ZZ /\ 1 < A ) -> ( 2 e. ZZ /\ A e. ZZ /\ 2 <_ A ) ) |
| 58 |
57
|
ex |
|- ( A e. ZZ -> ( 1 < A -> ( 2 e. ZZ /\ A e. ZZ /\ 2 <_ A ) ) ) |
| 59 |
58
|
adantr |
|- ( ( A e. ZZ /\ N e. ZZ ) -> ( 1 < A -> ( 2 e. ZZ /\ A e. ZZ /\ 2 <_ A ) ) ) |
| 60 |
3 4 59
|
3syl |
|- ( ph -> ( 1 < A -> ( 2 e. ZZ /\ A e. ZZ /\ 2 <_ A ) ) ) |
| 61 |
1 60
|
mpd |
|- ( ph -> ( 2 e. ZZ /\ A e. ZZ /\ 2 <_ A ) ) |
| 62 |
|
eluz2 |
|- ( A e. ( ZZ>= ` 2 ) <-> ( 2 e. ZZ /\ A e. ZZ /\ 2 <_ A ) ) |
| 63 |
61 62
|
sylibr |
|- ( ph -> A e. ( ZZ>= ` 2 ) ) |
| 64 |
63
|
adantr |
|- ( ( ph /\ k e. ZZ ) -> A e. ( ZZ>= ` 2 ) ) |
| 65 |
64
|
adantr |
|- ( ( ( ph /\ k e. ZZ ) /\ ( k x. A ) = N ) -> A e. ( ZZ>= ` 2 ) ) |
| 66 |
|
nprm |
|- ( ( k e. ( ZZ>= ` 2 ) /\ A e. ( ZZ>= ` 2 ) ) -> -. ( k x. A ) e. Prime ) |
| 67 |
48 65 66
|
syl2anc |
|- ( ( ( ph /\ k e. ZZ ) /\ ( k x. A ) = N ) -> -. ( k x. A ) e. Prime ) |
| 68 |
|
eleq1 |
|- ( ( k x. A ) = N -> ( ( k x. A ) e. Prime <-> N e. Prime ) ) |
| 69 |
68
|
notbid |
|- ( ( k x. A ) = N -> ( -. ( k x. A ) e. Prime <-> -. N e. Prime ) ) |
| 70 |
69
|
adantl |
|- ( ( ( ph /\ k e. ZZ ) /\ ( k x. A ) = N ) -> ( -. ( k x. A ) e. Prime <-> -. N e. Prime ) ) |
| 71 |
67 70
|
mpbid |
|- ( ( ( ph /\ k e. ZZ ) /\ ( k x. A ) = N ) -> -. N e. Prime ) |
| 72 |
71
|
rexlimdva2 |
|- ( ph -> ( E. k e. ZZ ( k x. A ) = N -> -. N e. Prime ) ) |
| 73 |
6 72
|
sylbid |
|- ( ph -> ( A || N -> -. N e. Prime ) ) |
| 74 |
3 73
|
mpd |
|- ( ph -> -. N e. Prime ) |