| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dvdsnprmd.g |  |-  ( ph -> 1 < A ) | 
						
							| 2 |  | dvdsnprmd.l |  |-  ( ph -> A < N ) | 
						
							| 3 |  | dvdsnprmd.d |  |-  ( ph -> A || N ) | 
						
							| 4 |  | dvdszrcl |  |-  ( A || N -> ( A e. ZZ /\ N e. ZZ ) ) | 
						
							| 5 |  | divides |  |-  ( ( A e. ZZ /\ N e. ZZ ) -> ( A || N <-> E. k e. ZZ ( k x. A ) = N ) ) | 
						
							| 6 | 3 4 5 | 3syl |  |-  ( ph -> ( A || N <-> E. k e. ZZ ( k x. A ) = N ) ) | 
						
							| 7 |  | 2z |  |-  2 e. ZZ | 
						
							| 8 | 7 | a1i |  |-  ( ( ( ph /\ k e. ZZ ) /\ ( k x. A ) = N ) -> 2 e. ZZ ) | 
						
							| 9 |  | simplr |  |-  ( ( ( ph /\ k e. ZZ ) /\ ( k x. A ) = N ) -> k e. ZZ ) | 
						
							| 10 | 2 | adantr |  |-  ( ( ph /\ k e. ZZ ) -> A < N ) | 
						
							| 11 | 10 | adantr |  |-  ( ( ( ph /\ k e. ZZ ) /\ ( k x. A ) = N ) -> A < N ) | 
						
							| 12 |  | breq2 |  |-  ( ( k x. A ) = N -> ( A < ( k x. A ) <-> A < N ) ) | 
						
							| 13 | 12 | adantl |  |-  ( ( ( ph /\ k e. ZZ ) /\ ( k x. A ) = N ) -> ( A < ( k x. A ) <-> A < N ) ) | 
						
							| 14 | 11 13 | mpbird |  |-  ( ( ( ph /\ k e. ZZ ) /\ ( k x. A ) = N ) -> A < ( k x. A ) ) | 
						
							| 15 |  | zre |  |-  ( A e. ZZ -> A e. RR ) | 
						
							| 16 | 15 | 3ad2ant1 |  |-  ( ( A e. ZZ /\ 1 < A /\ k e. ZZ ) -> A e. RR ) | 
						
							| 17 |  | zre |  |-  ( k e. ZZ -> k e. RR ) | 
						
							| 18 | 17 | 3ad2ant3 |  |-  ( ( A e. ZZ /\ 1 < A /\ k e. ZZ ) -> k e. RR ) | 
						
							| 19 |  | 0lt1 |  |-  0 < 1 | 
						
							| 20 |  | 0red |  |-  ( A e. ZZ -> 0 e. RR ) | 
						
							| 21 |  | 1red |  |-  ( A e. ZZ -> 1 e. RR ) | 
						
							| 22 |  | lttr |  |-  ( ( 0 e. RR /\ 1 e. RR /\ A e. RR ) -> ( ( 0 < 1 /\ 1 < A ) -> 0 < A ) ) | 
						
							| 23 | 20 21 15 22 | syl3anc |  |-  ( A e. ZZ -> ( ( 0 < 1 /\ 1 < A ) -> 0 < A ) ) | 
						
							| 24 | 19 23 | mpani |  |-  ( A e. ZZ -> ( 1 < A -> 0 < A ) ) | 
						
							| 25 | 24 | imp |  |-  ( ( A e. ZZ /\ 1 < A ) -> 0 < A ) | 
						
							| 26 | 25 | 3adant3 |  |-  ( ( A e. ZZ /\ 1 < A /\ k e. ZZ ) -> 0 < A ) | 
						
							| 27 | 16 18 26 | 3jca |  |-  ( ( A e. ZZ /\ 1 < A /\ k e. ZZ ) -> ( A e. RR /\ k e. RR /\ 0 < A ) ) | 
						
							| 28 | 27 | 3exp |  |-  ( A e. ZZ -> ( 1 < A -> ( k e. ZZ -> ( A e. RR /\ k e. RR /\ 0 < A ) ) ) ) | 
						
							| 29 | 28 | adantr |  |-  ( ( A e. ZZ /\ N e. ZZ ) -> ( 1 < A -> ( k e. ZZ -> ( A e. RR /\ k e. RR /\ 0 < A ) ) ) ) | 
						
							| 30 | 3 4 29 | 3syl |  |-  ( ph -> ( 1 < A -> ( k e. ZZ -> ( A e. RR /\ k e. RR /\ 0 < A ) ) ) ) | 
						
							| 31 | 1 30 | mpd |  |-  ( ph -> ( k e. ZZ -> ( A e. RR /\ k e. RR /\ 0 < A ) ) ) | 
						
							| 32 | 31 | imp |  |-  ( ( ph /\ k e. ZZ ) -> ( A e. RR /\ k e. RR /\ 0 < A ) ) | 
						
							| 33 | 32 | adantr |  |-  ( ( ( ph /\ k e. ZZ ) /\ ( k x. A ) = N ) -> ( A e. RR /\ k e. RR /\ 0 < A ) ) | 
						
							| 34 |  | ltmulgt12 |  |-  ( ( A e. RR /\ k e. RR /\ 0 < A ) -> ( 1 < k <-> A < ( k x. A ) ) ) | 
						
							| 35 | 33 34 | syl |  |-  ( ( ( ph /\ k e. ZZ ) /\ ( k x. A ) = N ) -> ( 1 < k <-> A < ( k x. A ) ) ) | 
						
							| 36 | 14 35 | mpbird |  |-  ( ( ( ph /\ k e. ZZ ) /\ ( k x. A ) = N ) -> 1 < k ) | 
						
							| 37 |  | df-2 |  |-  2 = ( 1 + 1 ) | 
						
							| 38 | 37 | breq1i |  |-  ( 2 <_ k <-> ( 1 + 1 ) <_ k ) | 
						
							| 39 |  | 1zzd |  |-  ( k e. ZZ -> 1 e. ZZ ) | 
						
							| 40 |  | zltp1le |  |-  ( ( 1 e. ZZ /\ k e. ZZ ) -> ( 1 < k <-> ( 1 + 1 ) <_ k ) ) | 
						
							| 41 | 39 40 | mpancom |  |-  ( k e. ZZ -> ( 1 < k <-> ( 1 + 1 ) <_ k ) ) | 
						
							| 42 | 41 | bicomd |  |-  ( k e. ZZ -> ( ( 1 + 1 ) <_ k <-> 1 < k ) ) | 
						
							| 43 | 42 | adantl |  |-  ( ( ph /\ k e. ZZ ) -> ( ( 1 + 1 ) <_ k <-> 1 < k ) ) | 
						
							| 44 | 43 | adantr |  |-  ( ( ( ph /\ k e. ZZ ) /\ ( k x. A ) = N ) -> ( ( 1 + 1 ) <_ k <-> 1 < k ) ) | 
						
							| 45 | 38 44 | bitrid |  |-  ( ( ( ph /\ k e. ZZ ) /\ ( k x. A ) = N ) -> ( 2 <_ k <-> 1 < k ) ) | 
						
							| 46 | 36 45 | mpbird |  |-  ( ( ( ph /\ k e. ZZ ) /\ ( k x. A ) = N ) -> 2 <_ k ) | 
						
							| 47 |  | eluz2 |  |-  ( k e. ( ZZ>= ` 2 ) <-> ( 2 e. ZZ /\ k e. ZZ /\ 2 <_ k ) ) | 
						
							| 48 | 8 9 46 47 | syl3anbrc |  |-  ( ( ( ph /\ k e. ZZ ) /\ ( k x. A ) = N ) -> k e. ( ZZ>= ` 2 ) ) | 
						
							| 49 | 7 | a1i |  |-  ( ( A e. ZZ /\ 1 < A ) -> 2 e. ZZ ) | 
						
							| 50 |  | simpl |  |-  ( ( A e. ZZ /\ 1 < A ) -> A e. ZZ ) | 
						
							| 51 |  | 1zzd |  |-  ( A e. ZZ -> 1 e. ZZ ) | 
						
							| 52 |  | zltp1le |  |-  ( ( 1 e. ZZ /\ A e. ZZ ) -> ( 1 < A <-> ( 1 + 1 ) <_ A ) ) | 
						
							| 53 | 51 52 | mpancom |  |-  ( A e. ZZ -> ( 1 < A <-> ( 1 + 1 ) <_ A ) ) | 
						
							| 54 | 53 | biimpa |  |-  ( ( A e. ZZ /\ 1 < A ) -> ( 1 + 1 ) <_ A ) | 
						
							| 55 | 37 | breq1i |  |-  ( 2 <_ A <-> ( 1 + 1 ) <_ A ) | 
						
							| 56 | 54 55 | sylibr |  |-  ( ( A e. ZZ /\ 1 < A ) -> 2 <_ A ) | 
						
							| 57 | 49 50 56 | 3jca |  |-  ( ( A e. ZZ /\ 1 < A ) -> ( 2 e. ZZ /\ A e. ZZ /\ 2 <_ A ) ) | 
						
							| 58 | 57 | ex |  |-  ( A e. ZZ -> ( 1 < A -> ( 2 e. ZZ /\ A e. ZZ /\ 2 <_ A ) ) ) | 
						
							| 59 | 58 | adantr |  |-  ( ( A e. ZZ /\ N e. ZZ ) -> ( 1 < A -> ( 2 e. ZZ /\ A e. ZZ /\ 2 <_ A ) ) ) | 
						
							| 60 | 3 4 59 | 3syl |  |-  ( ph -> ( 1 < A -> ( 2 e. ZZ /\ A e. ZZ /\ 2 <_ A ) ) ) | 
						
							| 61 | 1 60 | mpd |  |-  ( ph -> ( 2 e. ZZ /\ A e. ZZ /\ 2 <_ A ) ) | 
						
							| 62 |  | eluz2 |  |-  ( A e. ( ZZ>= ` 2 ) <-> ( 2 e. ZZ /\ A e. ZZ /\ 2 <_ A ) ) | 
						
							| 63 | 61 62 | sylibr |  |-  ( ph -> A e. ( ZZ>= ` 2 ) ) | 
						
							| 64 | 63 | adantr |  |-  ( ( ph /\ k e. ZZ ) -> A e. ( ZZ>= ` 2 ) ) | 
						
							| 65 | 64 | adantr |  |-  ( ( ( ph /\ k e. ZZ ) /\ ( k x. A ) = N ) -> A e. ( ZZ>= ` 2 ) ) | 
						
							| 66 |  | nprm |  |-  ( ( k e. ( ZZ>= ` 2 ) /\ A e. ( ZZ>= ` 2 ) ) -> -. ( k x. A ) e. Prime ) | 
						
							| 67 | 48 65 66 | syl2anc |  |-  ( ( ( ph /\ k e. ZZ ) /\ ( k x. A ) = N ) -> -. ( k x. A ) e. Prime ) | 
						
							| 68 |  | eleq1 |  |-  ( ( k x. A ) = N -> ( ( k x. A ) e. Prime <-> N e. Prime ) ) | 
						
							| 69 | 68 | notbid |  |-  ( ( k x. A ) = N -> ( -. ( k x. A ) e. Prime <-> -. N e. Prime ) ) | 
						
							| 70 | 69 | adantl |  |-  ( ( ( ph /\ k e. ZZ ) /\ ( k x. A ) = N ) -> ( -. ( k x. A ) e. Prime <-> -. N e. Prime ) ) | 
						
							| 71 | 67 70 | mpbid |  |-  ( ( ( ph /\ k e. ZZ ) /\ ( k x. A ) = N ) -> -. N e. Prime ) | 
						
							| 72 | 71 | rexlimdva2 |  |-  ( ph -> ( E. k e. ZZ ( k x. A ) = N -> -. N e. Prime ) ) | 
						
							| 73 | 6 72 | sylbid |  |-  ( ph -> ( A || N -> -. N e. Prime ) ) | 
						
							| 74 | 3 73 | mpd |  |-  ( ph -> -. N e. Prime ) |