| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elnn0 |  |-  ( N e. NN0 <-> ( N e. NN \/ N = 0 ) ) | 
						
							| 2 |  | simp2 |  |-  ( ( N e. NN /\ A e. CC /\ B e. CC ) -> A e. CC ) | 
						
							| 3 |  | simp3 |  |-  ( ( N e. NN /\ A e. CC /\ B e. CC ) -> B e. CC ) | 
						
							| 4 |  | fzofi |  |-  ( 0 ..^ N ) e. Fin | 
						
							| 5 | 4 | a1i |  |-  ( ( N e. NN /\ A e. CC /\ B e. CC ) -> ( 0 ..^ N ) e. Fin ) | 
						
							| 6 | 2 | adantr |  |-  ( ( ( N e. NN /\ A e. CC /\ B e. CC ) /\ k e. ( 0 ..^ N ) ) -> A e. CC ) | 
						
							| 7 |  | elfzonn0 |  |-  ( k e. ( 0 ..^ N ) -> k e. NN0 ) | 
						
							| 8 | 7 | adantl |  |-  ( ( ( N e. NN /\ A e. CC /\ B e. CC ) /\ k e. ( 0 ..^ N ) ) -> k e. NN0 ) | 
						
							| 9 | 6 8 | expcld |  |-  ( ( ( N e. NN /\ A e. CC /\ B e. CC ) /\ k e. ( 0 ..^ N ) ) -> ( A ^ k ) e. CC ) | 
						
							| 10 | 3 | adantr |  |-  ( ( ( N e. NN /\ A e. CC /\ B e. CC ) /\ k e. ( 0 ..^ N ) ) -> B e. CC ) | 
						
							| 11 |  | ubmelm1fzo |  |-  ( k e. ( 0 ..^ N ) -> ( ( N - k ) - 1 ) e. ( 0 ..^ N ) ) | 
						
							| 12 |  | elfzonn0 |  |-  ( ( ( N - k ) - 1 ) e. ( 0 ..^ N ) -> ( ( N - k ) - 1 ) e. NN0 ) | 
						
							| 13 | 11 12 | syl |  |-  ( k e. ( 0 ..^ N ) -> ( ( N - k ) - 1 ) e. NN0 ) | 
						
							| 14 | 13 | adantl |  |-  ( ( ( N e. NN /\ A e. CC /\ B e. CC ) /\ k e. ( 0 ..^ N ) ) -> ( ( N - k ) - 1 ) e. NN0 ) | 
						
							| 15 | 10 14 | expcld |  |-  ( ( ( N e. NN /\ A e. CC /\ B e. CC ) /\ k e. ( 0 ..^ N ) ) -> ( B ^ ( ( N - k ) - 1 ) ) e. CC ) | 
						
							| 16 | 9 15 | mulcld |  |-  ( ( ( N e. NN /\ A e. CC /\ B e. CC ) /\ k e. ( 0 ..^ N ) ) -> ( ( A ^ k ) x. ( B ^ ( ( N - k ) - 1 ) ) ) e. CC ) | 
						
							| 17 | 5 16 | fsumcl |  |-  ( ( N e. NN /\ A e. CC /\ B e. CC ) -> sum_ k e. ( 0 ..^ N ) ( ( A ^ k ) x. ( B ^ ( ( N - k ) - 1 ) ) ) e. CC ) | 
						
							| 18 | 2 3 17 | subdird |  |-  ( ( N e. NN /\ A e. CC /\ B e. CC ) -> ( ( A - B ) x. sum_ k e. ( 0 ..^ N ) ( ( A ^ k ) x. ( B ^ ( ( N - k ) - 1 ) ) ) ) = ( ( A x. sum_ k e. ( 0 ..^ N ) ( ( A ^ k ) x. ( B ^ ( ( N - k ) - 1 ) ) ) ) - ( B x. sum_ k e. ( 0 ..^ N ) ( ( A ^ k ) x. ( B ^ ( ( N - k ) - 1 ) ) ) ) ) ) | 
						
							| 19 | 5 2 16 | fsummulc2 |  |-  ( ( N e. NN /\ A e. CC /\ B e. CC ) -> ( A x. sum_ k e. ( 0 ..^ N ) ( ( A ^ k ) x. ( B ^ ( ( N - k ) - 1 ) ) ) ) = sum_ k e. ( 0 ..^ N ) ( A x. ( ( A ^ k ) x. ( B ^ ( ( N - k ) - 1 ) ) ) ) ) | 
						
							| 20 | 6 9 15 | mulassd |  |-  ( ( ( N e. NN /\ A e. CC /\ B e. CC ) /\ k e. ( 0 ..^ N ) ) -> ( ( A x. ( A ^ k ) ) x. ( B ^ ( ( N - k ) - 1 ) ) ) = ( A x. ( ( A ^ k ) x. ( B ^ ( ( N - k ) - 1 ) ) ) ) ) | 
						
							| 21 | 6 9 | mulcomd |  |-  ( ( ( N e. NN /\ A e. CC /\ B e. CC ) /\ k e. ( 0 ..^ N ) ) -> ( A x. ( A ^ k ) ) = ( ( A ^ k ) x. A ) ) | 
						
							| 22 |  | expp1 |  |-  ( ( A e. CC /\ k e. NN0 ) -> ( A ^ ( k + 1 ) ) = ( ( A ^ k ) x. A ) ) | 
						
							| 23 | 2 7 22 | syl2an |  |-  ( ( ( N e. NN /\ A e. CC /\ B e. CC ) /\ k e. ( 0 ..^ N ) ) -> ( A ^ ( k + 1 ) ) = ( ( A ^ k ) x. A ) ) | 
						
							| 24 | 21 23 | eqtr4d |  |-  ( ( ( N e. NN /\ A e. CC /\ B e. CC ) /\ k e. ( 0 ..^ N ) ) -> ( A x. ( A ^ k ) ) = ( A ^ ( k + 1 ) ) ) | 
						
							| 25 | 24 | oveq1d |  |-  ( ( ( N e. NN /\ A e. CC /\ B e. CC ) /\ k e. ( 0 ..^ N ) ) -> ( ( A x. ( A ^ k ) ) x. ( B ^ ( ( N - k ) - 1 ) ) ) = ( ( A ^ ( k + 1 ) ) x. ( B ^ ( ( N - k ) - 1 ) ) ) ) | 
						
							| 26 | 20 25 | eqtr3d |  |-  ( ( ( N e. NN /\ A e. CC /\ B e. CC ) /\ k e. ( 0 ..^ N ) ) -> ( A x. ( ( A ^ k ) x. ( B ^ ( ( N - k ) - 1 ) ) ) ) = ( ( A ^ ( k + 1 ) ) x. ( B ^ ( ( N - k ) - 1 ) ) ) ) | 
						
							| 27 | 26 | sumeq2dv |  |-  ( ( N e. NN /\ A e. CC /\ B e. CC ) -> sum_ k e. ( 0 ..^ N ) ( A x. ( ( A ^ k ) x. ( B ^ ( ( N - k ) - 1 ) ) ) ) = sum_ k e. ( 0 ..^ N ) ( ( A ^ ( k + 1 ) ) x. ( B ^ ( ( N - k ) - 1 ) ) ) ) | 
						
							| 28 | 19 27 | eqtrd |  |-  ( ( N e. NN /\ A e. CC /\ B e. CC ) -> ( A x. sum_ k e. ( 0 ..^ N ) ( ( A ^ k ) x. ( B ^ ( ( N - k ) - 1 ) ) ) ) = sum_ k e. ( 0 ..^ N ) ( ( A ^ ( k + 1 ) ) x. ( B ^ ( ( N - k ) - 1 ) ) ) ) | 
						
							| 29 | 5 3 16 | fsummulc2 |  |-  ( ( N e. NN /\ A e. CC /\ B e. CC ) -> ( B x. sum_ k e. ( 0 ..^ N ) ( ( A ^ k ) x. ( B ^ ( ( N - k ) - 1 ) ) ) ) = sum_ k e. ( 0 ..^ N ) ( B x. ( ( A ^ k ) x. ( B ^ ( ( N - k ) - 1 ) ) ) ) ) | 
						
							| 30 | 10 16 | mulcomd |  |-  ( ( ( N e. NN /\ A e. CC /\ B e. CC ) /\ k e. ( 0 ..^ N ) ) -> ( B x. ( ( A ^ k ) x. ( B ^ ( ( N - k ) - 1 ) ) ) ) = ( ( ( A ^ k ) x. ( B ^ ( ( N - k ) - 1 ) ) ) x. B ) ) | 
						
							| 31 | 9 15 10 | mulassd |  |-  ( ( ( N e. NN /\ A e. CC /\ B e. CC ) /\ k e. ( 0 ..^ N ) ) -> ( ( ( A ^ k ) x. ( B ^ ( ( N - k ) - 1 ) ) ) x. B ) = ( ( A ^ k ) x. ( ( B ^ ( ( N - k ) - 1 ) ) x. B ) ) ) | 
						
							| 32 |  | expp1 |  |-  ( ( B e. CC /\ ( ( N - k ) - 1 ) e. NN0 ) -> ( B ^ ( ( ( N - k ) - 1 ) + 1 ) ) = ( ( B ^ ( ( N - k ) - 1 ) ) x. B ) ) | 
						
							| 33 | 32 | eqcomd |  |-  ( ( B e. CC /\ ( ( N - k ) - 1 ) e. NN0 ) -> ( ( B ^ ( ( N - k ) - 1 ) ) x. B ) = ( B ^ ( ( ( N - k ) - 1 ) + 1 ) ) ) | 
						
							| 34 | 3 13 33 | syl2an |  |-  ( ( ( N e. NN /\ A e. CC /\ B e. CC ) /\ k e. ( 0 ..^ N ) ) -> ( ( B ^ ( ( N - k ) - 1 ) ) x. B ) = ( B ^ ( ( ( N - k ) - 1 ) + 1 ) ) ) | 
						
							| 35 |  | nncn |  |-  ( N e. NN -> N e. CC ) | 
						
							| 36 | 35 | 3ad2ant1 |  |-  ( ( N e. NN /\ A e. CC /\ B e. CC ) -> N e. CC ) | 
						
							| 37 | 36 | adantr |  |-  ( ( ( N e. NN /\ A e. CC /\ B e. CC ) /\ k e. ( 0 ..^ N ) ) -> N e. CC ) | 
						
							| 38 |  | elfzoelz |  |-  ( k e. ( 0 ..^ N ) -> k e. ZZ ) | 
						
							| 39 | 38 | zcnd |  |-  ( k e. ( 0 ..^ N ) -> k e. CC ) | 
						
							| 40 | 39 | adantl |  |-  ( ( ( N e. NN /\ A e. CC /\ B e. CC ) /\ k e. ( 0 ..^ N ) ) -> k e. CC ) | 
						
							| 41 | 37 40 | subcld |  |-  ( ( ( N e. NN /\ A e. CC /\ B e. CC ) /\ k e. ( 0 ..^ N ) ) -> ( N - k ) e. CC ) | 
						
							| 42 |  | npcan1 |  |-  ( ( N - k ) e. CC -> ( ( ( N - k ) - 1 ) + 1 ) = ( N - k ) ) | 
						
							| 43 | 42 | oveq2d |  |-  ( ( N - k ) e. CC -> ( B ^ ( ( ( N - k ) - 1 ) + 1 ) ) = ( B ^ ( N - k ) ) ) | 
						
							| 44 | 41 43 | syl |  |-  ( ( ( N e. NN /\ A e. CC /\ B e. CC ) /\ k e. ( 0 ..^ N ) ) -> ( B ^ ( ( ( N - k ) - 1 ) + 1 ) ) = ( B ^ ( N - k ) ) ) | 
						
							| 45 | 34 44 | eqtrd |  |-  ( ( ( N e. NN /\ A e. CC /\ B e. CC ) /\ k e. ( 0 ..^ N ) ) -> ( ( B ^ ( ( N - k ) - 1 ) ) x. B ) = ( B ^ ( N - k ) ) ) | 
						
							| 46 | 45 | oveq2d |  |-  ( ( ( N e. NN /\ A e. CC /\ B e. CC ) /\ k e. ( 0 ..^ N ) ) -> ( ( A ^ k ) x. ( ( B ^ ( ( N - k ) - 1 ) ) x. B ) ) = ( ( A ^ k ) x. ( B ^ ( N - k ) ) ) ) | 
						
							| 47 | 30 31 46 | 3eqtrd |  |-  ( ( ( N e. NN /\ A e. CC /\ B e. CC ) /\ k e. ( 0 ..^ N ) ) -> ( B x. ( ( A ^ k ) x. ( B ^ ( ( N - k ) - 1 ) ) ) ) = ( ( A ^ k ) x. ( B ^ ( N - k ) ) ) ) | 
						
							| 48 | 47 | sumeq2dv |  |-  ( ( N e. NN /\ A e. CC /\ B e. CC ) -> sum_ k e. ( 0 ..^ N ) ( B x. ( ( A ^ k ) x. ( B ^ ( ( N - k ) - 1 ) ) ) ) = sum_ k e. ( 0 ..^ N ) ( ( A ^ k ) x. ( B ^ ( N - k ) ) ) ) | 
						
							| 49 | 29 48 | eqtrd |  |-  ( ( N e. NN /\ A e. CC /\ B e. CC ) -> ( B x. sum_ k e. ( 0 ..^ N ) ( ( A ^ k ) x. ( B ^ ( ( N - k ) - 1 ) ) ) ) = sum_ k e. ( 0 ..^ N ) ( ( A ^ k ) x. ( B ^ ( N - k ) ) ) ) | 
						
							| 50 | 28 49 | oveq12d |  |-  ( ( N e. NN /\ A e. CC /\ B e. CC ) -> ( ( A x. sum_ k e. ( 0 ..^ N ) ( ( A ^ k ) x. ( B ^ ( ( N - k ) - 1 ) ) ) ) - ( B x. sum_ k e. ( 0 ..^ N ) ( ( A ^ k ) x. ( B ^ ( ( N - k ) - 1 ) ) ) ) ) = ( sum_ k e. ( 0 ..^ N ) ( ( A ^ ( k + 1 ) ) x. ( B ^ ( ( N - k ) - 1 ) ) ) - sum_ k e. ( 0 ..^ N ) ( ( A ^ k ) x. ( B ^ ( N - k ) ) ) ) ) | 
						
							| 51 |  | nnz |  |-  ( N e. NN -> N e. ZZ ) | 
						
							| 52 | 51 | 3ad2ant1 |  |-  ( ( N e. NN /\ A e. CC /\ B e. CC ) -> N e. ZZ ) | 
						
							| 53 |  | fzoval |  |-  ( N e. ZZ -> ( 0 ..^ N ) = ( 0 ... ( N - 1 ) ) ) | 
						
							| 54 | 52 53 | syl |  |-  ( ( N e. NN /\ A e. CC /\ B e. CC ) -> ( 0 ..^ N ) = ( 0 ... ( N - 1 ) ) ) | 
						
							| 55 | 54 | sumeq1d |  |-  ( ( N e. NN /\ A e. CC /\ B e. CC ) -> sum_ k e. ( 0 ..^ N ) ( ( A ^ ( k + 1 ) ) x. ( B ^ ( ( N - k ) - 1 ) ) ) = sum_ k e. ( 0 ... ( N - 1 ) ) ( ( A ^ ( k + 1 ) ) x. ( B ^ ( ( N - k ) - 1 ) ) ) ) | 
						
							| 56 |  | nnm1nn0 |  |-  ( N e. NN -> ( N - 1 ) e. NN0 ) | 
						
							| 57 |  | nn0uz |  |-  NN0 = ( ZZ>= ` 0 ) | 
						
							| 58 | 56 57 | eleqtrdi |  |-  ( N e. NN -> ( N - 1 ) e. ( ZZ>= ` 0 ) ) | 
						
							| 59 | 58 | 3ad2ant1 |  |-  ( ( N e. NN /\ A e. CC /\ B e. CC ) -> ( N - 1 ) e. ( ZZ>= ` 0 ) ) | 
						
							| 60 | 2 | adantr |  |-  ( ( ( N e. NN /\ A e. CC /\ B e. CC ) /\ k e. ( 0 ... ( N - 1 ) ) ) -> A e. CC ) | 
						
							| 61 |  | elfznn0 |  |-  ( k e. ( 0 ... ( N - 1 ) ) -> k e. NN0 ) | 
						
							| 62 |  | peano2nn0 |  |-  ( k e. NN0 -> ( k + 1 ) e. NN0 ) | 
						
							| 63 | 61 62 | syl |  |-  ( k e. ( 0 ... ( N - 1 ) ) -> ( k + 1 ) e. NN0 ) | 
						
							| 64 | 63 | adantl |  |-  ( ( ( N e. NN /\ A e. CC /\ B e. CC ) /\ k e. ( 0 ... ( N - 1 ) ) ) -> ( k + 1 ) e. NN0 ) | 
						
							| 65 | 60 64 | expcld |  |-  ( ( ( N e. NN /\ A e. CC /\ B e. CC ) /\ k e. ( 0 ... ( N - 1 ) ) ) -> ( A ^ ( k + 1 ) ) e. CC ) | 
						
							| 66 | 3 | adantr |  |-  ( ( ( N e. NN /\ A e. CC /\ B e. CC ) /\ k e. ( 0 ... ( N - 1 ) ) ) -> B e. CC ) | 
						
							| 67 | 36 | adantr |  |-  ( ( ( N e. NN /\ A e. CC /\ B e. CC ) /\ k e. ( 0 ... ( N - 1 ) ) ) -> N e. CC ) | 
						
							| 68 | 61 | nn0cnd |  |-  ( k e. ( 0 ... ( N - 1 ) ) -> k e. CC ) | 
						
							| 69 | 68 | adantl |  |-  ( ( ( N e. NN /\ A e. CC /\ B e. CC ) /\ k e. ( 0 ... ( N - 1 ) ) ) -> k e. CC ) | 
						
							| 70 |  | 1cnd |  |-  ( ( ( N e. NN /\ A e. CC /\ B e. CC ) /\ k e. ( 0 ... ( N - 1 ) ) ) -> 1 e. CC ) | 
						
							| 71 | 67 69 70 | sub32d |  |-  ( ( ( N e. NN /\ A e. CC /\ B e. CC ) /\ k e. ( 0 ... ( N - 1 ) ) ) -> ( ( N - k ) - 1 ) = ( ( N - 1 ) - k ) ) | 
						
							| 72 |  | fznn0sub |  |-  ( k e. ( 0 ... ( N - 1 ) ) -> ( ( N - 1 ) - k ) e. NN0 ) | 
						
							| 73 | 72 | adantl |  |-  ( ( ( N e. NN /\ A e. CC /\ B e. CC ) /\ k e. ( 0 ... ( N - 1 ) ) ) -> ( ( N - 1 ) - k ) e. NN0 ) | 
						
							| 74 | 71 73 | eqeltrd |  |-  ( ( ( N e. NN /\ A e. CC /\ B e. CC ) /\ k e. ( 0 ... ( N - 1 ) ) ) -> ( ( N - k ) - 1 ) e. NN0 ) | 
						
							| 75 | 66 74 | expcld |  |-  ( ( ( N e. NN /\ A e. CC /\ B e. CC ) /\ k e. ( 0 ... ( N - 1 ) ) ) -> ( B ^ ( ( N - k ) - 1 ) ) e. CC ) | 
						
							| 76 | 65 75 | mulcld |  |-  ( ( ( N e. NN /\ A e. CC /\ B e. CC ) /\ k e. ( 0 ... ( N - 1 ) ) ) -> ( ( A ^ ( k + 1 ) ) x. ( B ^ ( ( N - k ) - 1 ) ) ) e. CC ) | 
						
							| 77 |  | oveq1 |  |-  ( k = ( N - 1 ) -> ( k + 1 ) = ( ( N - 1 ) + 1 ) ) | 
						
							| 78 | 77 | oveq2d |  |-  ( k = ( N - 1 ) -> ( A ^ ( k + 1 ) ) = ( A ^ ( ( N - 1 ) + 1 ) ) ) | 
						
							| 79 |  | oveq2 |  |-  ( k = ( N - 1 ) -> ( N - k ) = ( N - ( N - 1 ) ) ) | 
						
							| 80 | 79 | oveq1d |  |-  ( k = ( N - 1 ) -> ( ( N - k ) - 1 ) = ( ( N - ( N - 1 ) ) - 1 ) ) | 
						
							| 81 | 80 | oveq2d |  |-  ( k = ( N - 1 ) -> ( B ^ ( ( N - k ) - 1 ) ) = ( B ^ ( ( N - ( N - 1 ) ) - 1 ) ) ) | 
						
							| 82 | 78 81 | oveq12d |  |-  ( k = ( N - 1 ) -> ( ( A ^ ( k + 1 ) ) x. ( B ^ ( ( N - k ) - 1 ) ) ) = ( ( A ^ ( ( N - 1 ) + 1 ) ) x. ( B ^ ( ( N - ( N - 1 ) ) - 1 ) ) ) ) | 
						
							| 83 | 59 76 82 | fsumm1 |  |-  ( ( N e. NN /\ A e. CC /\ B e. CC ) -> sum_ k e. ( 0 ... ( N - 1 ) ) ( ( A ^ ( k + 1 ) ) x. ( B ^ ( ( N - k ) - 1 ) ) ) = ( sum_ k e. ( 0 ... ( ( N - 1 ) - 1 ) ) ( ( A ^ ( k + 1 ) ) x. ( B ^ ( ( N - k ) - 1 ) ) ) + ( ( A ^ ( ( N - 1 ) + 1 ) ) x. ( B ^ ( ( N - ( N - 1 ) ) - 1 ) ) ) ) ) | 
						
							| 84 | 55 83 | eqtrd |  |-  ( ( N e. NN /\ A e. CC /\ B e. CC ) -> sum_ k e. ( 0 ..^ N ) ( ( A ^ ( k + 1 ) ) x. ( B ^ ( ( N - k ) - 1 ) ) ) = ( sum_ k e. ( 0 ... ( ( N - 1 ) - 1 ) ) ( ( A ^ ( k + 1 ) ) x. ( B ^ ( ( N - k ) - 1 ) ) ) + ( ( A ^ ( ( N - 1 ) + 1 ) ) x. ( B ^ ( ( N - ( N - 1 ) ) - 1 ) ) ) ) ) | 
						
							| 85 | 54 | sumeq1d |  |-  ( ( N e. NN /\ A e. CC /\ B e. CC ) -> sum_ k e. ( 0 ..^ N ) ( ( A ^ k ) x. ( B ^ ( N - k ) ) ) = sum_ k e. ( 0 ... ( N - 1 ) ) ( ( A ^ k ) x. ( B ^ ( N - k ) ) ) ) | 
						
							| 86 | 61 | adantl |  |-  ( ( ( N e. NN /\ A e. CC /\ B e. CC ) /\ k e. ( 0 ... ( N - 1 ) ) ) -> k e. NN0 ) | 
						
							| 87 | 60 86 | expcld |  |-  ( ( ( N e. NN /\ A e. CC /\ B e. CC ) /\ k e. ( 0 ... ( N - 1 ) ) ) -> ( A ^ k ) e. CC ) | 
						
							| 88 | 54 | eleq2d |  |-  ( ( N e. NN /\ A e. CC /\ B e. CC ) -> ( k e. ( 0 ..^ N ) <-> k e. ( 0 ... ( N - 1 ) ) ) ) | 
						
							| 89 |  | fzonnsub |  |-  ( k e. ( 0 ..^ N ) -> ( N - k ) e. NN ) | 
						
							| 90 | 89 | nnnn0d |  |-  ( k e. ( 0 ..^ N ) -> ( N - k ) e. NN0 ) | 
						
							| 91 | 88 90 | biimtrrdi |  |-  ( ( N e. NN /\ A e. CC /\ B e. CC ) -> ( k e. ( 0 ... ( N - 1 ) ) -> ( N - k ) e. NN0 ) ) | 
						
							| 92 | 91 | imp |  |-  ( ( ( N e. NN /\ A e. CC /\ B e. CC ) /\ k e. ( 0 ... ( N - 1 ) ) ) -> ( N - k ) e. NN0 ) | 
						
							| 93 | 66 92 | expcld |  |-  ( ( ( N e. NN /\ A e. CC /\ B e. CC ) /\ k e. ( 0 ... ( N - 1 ) ) ) -> ( B ^ ( N - k ) ) e. CC ) | 
						
							| 94 | 87 93 | mulcld |  |-  ( ( ( N e. NN /\ A e. CC /\ B e. CC ) /\ k e. ( 0 ... ( N - 1 ) ) ) -> ( ( A ^ k ) x. ( B ^ ( N - k ) ) ) e. CC ) | 
						
							| 95 |  | oveq2 |  |-  ( k = 0 -> ( A ^ k ) = ( A ^ 0 ) ) | 
						
							| 96 |  | oveq2 |  |-  ( k = 0 -> ( N - k ) = ( N - 0 ) ) | 
						
							| 97 | 96 | oveq2d |  |-  ( k = 0 -> ( B ^ ( N - k ) ) = ( B ^ ( N - 0 ) ) ) | 
						
							| 98 | 95 97 | oveq12d |  |-  ( k = 0 -> ( ( A ^ k ) x. ( B ^ ( N - k ) ) ) = ( ( A ^ 0 ) x. ( B ^ ( N - 0 ) ) ) ) | 
						
							| 99 | 59 94 98 | fsum1p |  |-  ( ( N e. NN /\ A e. CC /\ B e. CC ) -> sum_ k e. ( 0 ... ( N - 1 ) ) ( ( A ^ k ) x. ( B ^ ( N - k ) ) ) = ( ( ( A ^ 0 ) x. ( B ^ ( N - 0 ) ) ) + sum_ k e. ( ( 0 + 1 ) ... ( N - 1 ) ) ( ( A ^ k ) x. ( B ^ ( N - k ) ) ) ) ) | 
						
							| 100 | 2 | exp0d |  |-  ( ( N e. NN /\ A e. CC /\ B e. CC ) -> ( A ^ 0 ) = 1 ) | 
						
							| 101 | 36 | subid1d |  |-  ( ( N e. NN /\ A e. CC /\ B e. CC ) -> ( N - 0 ) = N ) | 
						
							| 102 | 101 | oveq2d |  |-  ( ( N e. NN /\ A e. CC /\ B e. CC ) -> ( B ^ ( N - 0 ) ) = ( B ^ N ) ) | 
						
							| 103 | 100 102 | oveq12d |  |-  ( ( N e. NN /\ A e. CC /\ B e. CC ) -> ( ( A ^ 0 ) x. ( B ^ ( N - 0 ) ) ) = ( 1 x. ( B ^ N ) ) ) | 
						
							| 104 |  | simp1 |  |-  ( ( N e. NN /\ A e. CC /\ B e. CC ) -> N e. NN ) | 
						
							| 105 | 104 | nnnn0d |  |-  ( ( N e. NN /\ A e. CC /\ B e. CC ) -> N e. NN0 ) | 
						
							| 106 | 3 105 | expcld |  |-  ( ( N e. NN /\ A e. CC /\ B e. CC ) -> ( B ^ N ) e. CC ) | 
						
							| 107 | 106 | mullidd |  |-  ( ( N e. NN /\ A e. CC /\ B e. CC ) -> ( 1 x. ( B ^ N ) ) = ( B ^ N ) ) | 
						
							| 108 | 103 107 | eqtrd |  |-  ( ( N e. NN /\ A e. CC /\ B e. CC ) -> ( ( A ^ 0 ) x. ( B ^ ( N - 0 ) ) ) = ( B ^ N ) ) | 
						
							| 109 |  | 0p1e1 |  |-  ( 0 + 1 ) = 1 | 
						
							| 110 | 109 | a1i |  |-  ( ( N e. NN /\ A e. CC /\ B e. CC ) -> ( 0 + 1 ) = 1 ) | 
						
							| 111 | 110 | oveq1d |  |-  ( ( N e. NN /\ A e. CC /\ B e. CC ) -> ( ( 0 + 1 ) ... ( N - 1 ) ) = ( 1 ... ( N - 1 ) ) ) | 
						
							| 112 | 111 | sumeq1d |  |-  ( ( N e. NN /\ A e. CC /\ B e. CC ) -> sum_ k e. ( ( 0 + 1 ) ... ( N - 1 ) ) ( ( A ^ k ) x. ( B ^ ( N - k ) ) ) = sum_ k e. ( 1 ... ( N - 1 ) ) ( ( A ^ k ) x. ( B ^ ( N - k ) ) ) ) | 
						
							| 113 | 108 112 | oveq12d |  |-  ( ( N e. NN /\ A e. CC /\ B e. CC ) -> ( ( ( A ^ 0 ) x. ( B ^ ( N - 0 ) ) ) + sum_ k e. ( ( 0 + 1 ) ... ( N - 1 ) ) ( ( A ^ k ) x. ( B ^ ( N - k ) ) ) ) = ( ( B ^ N ) + sum_ k e. ( 1 ... ( N - 1 ) ) ( ( A ^ k ) x. ( B ^ ( N - k ) ) ) ) ) | 
						
							| 114 | 85 99 113 | 3eqtrd |  |-  ( ( N e. NN /\ A e. CC /\ B e. CC ) -> sum_ k e. ( 0 ..^ N ) ( ( A ^ k ) x. ( B ^ ( N - k ) ) ) = ( ( B ^ N ) + sum_ k e. ( 1 ... ( N - 1 ) ) ( ( A ^ k ) x. ( B ^ ( N - k ) ) ) ) ) | 
						
							| 115 | 84 114 | oveq12d |  |-  ( ( N e. NN /\ A e. CC /\ B e. CC ) -> ( sum_ k e. ( 0 ..^ N ) ( ( A ^ ( k + 1 ) ) x. ( B ^ ( ( N - k ) - 1 ) ) ) - sum_ k e. ( 0 ..^ N ) ( ( A ^ k ) x. ( B ^ ( N - k ) ) ) ) = ( ( sum_ k e. ( 0 ... ( ( N - 1 ) - 1 ) ) ( ( A ^ ( k + 1 ) ) x. ( B ^ ( ( N - k ) - 1 ) ) ) + ( ( A ^ ( ( N - 1 ) + 1 ) ) x. ( B ^ ( ( N - ( N - 1 ) ) - 1 ) ) ) ) - ( ( B ^ N ) + sum_ k e. ( 1 ... ( N - 1 ) ) ( ( A ^ k ) x. ( B ^ ( N - k ) ) ) ) ) ) | 
						
							| 116 |  | fzfid |  |-  ( ( N e. NN /\ A e. CC /\ B e. CC ) -> ( 1 ... ( N - 1 ) ) e. Fin ) | 
						
							| 117 | 2 | adantr |  |-  ( ( ( N e. NN /\ A e. CC /\ B e. CC ) /\ k e. ( 1 ... ( N - 1 ) ) ) -> A e. CC ) | 
						
							| 118 |  | elfznn |  |-  ( k e. ( 1 ... ( N - 1 ) ) -> k e. NN ) | 
						
							| 119 | 118 | nnnn0d |  |-  ( k e. ( 1 ... ( N - 1 ) ) -> k e. NN0 ) | 
						
							| 120 | 119 | adantl |  |-  ( ( ( N e. NN /\ A e. CC /\ B e. CC ) /\ k e. ( 1 ... ( N - 1 ) ) ) -> k e. NN0 ) | 
						
							| 121 | 117 120 | expcld |  |-  ( ( ( N e. NN /\ A e. CC /\ B e. CC ) /\ k e. ( 1 ... ( N - 1 ) ) ) -> ( A ^ k ) e. CC ) | 
						
							| 122 | 3 | adantr |  |-  ( ( ( N e. NN /\ A e. CC /\ B e. CC ) /\ k e. ( 1 ... ( N - 1 ) ) ) -> B e. CC ) | 
						
							| 123 |  | fzoval |  |-  ( N e. ZZ -> ( 1 ..^ N ) = ( 1 ... ( N - 1 ) ) ) | 
						
							| 124 | 52 123 | syl |  |-  ( ( N e. NN /\ A e. CC /\ B e. CC ) -> ( 1 ..^ N ) = ( 1 ... ( N - 1 ) ) ) | 
						
							| 125 | 124 | eleq2d |  |-  ( ( N e. NN /\ A e. CC /\ B e. CC ) -> ( k e. ( 1 ..^ N ) <-> k e. ( 1 ... ( N - 1 ) ) ) ) | 
						
							| 126 |  | fzonnsub |  |-  ( k e. ( 1 ..^ N ) -> ( N - k ) e. NN ) | 
						
							| 127 | 126 | nnnn0d |  |-  ( k e. ( 1 ..^ N ) -> ( N - k ) e. NN0 ) | 
						
							| 128 | 125 127 | biimtrrdi |  |-  ( ( N e. NN /\ A e. CC /\ B e. CC ) -> ( k e. ( 1 ... ( N - 1 ) ) -> ( N - k ) e. NN0 ) ) | 
						
							| 129 | 128 | imp |  |-  ( ( ( N e. NN /\ A e. CC /\ B e. CC ) /\ k e. ( 1 ... ( N - 1 ) ) ) -> ( N - k ) e. NN0 ) | 
						
							| 130 | 122 129 | expcld |  |-  ( ( ( N e. NN /\ A e. CC /\ B e. CC ) /\ k e. ( 1 ... ( N - 1 ) ) ) -> ( B ^ ( N - k ) ) e. CC ) | 
						
							| 131 | 121 130 | mulcld |  |-  ( ( ( N e. NN /\ A e. CC /\ B e. CC ) /\ k e. ( 1 ... ( N - 1 ) ) ) -> ( ( A ^ k ) x. ( B ^ ( N - k ) ) ) e. CC ) | 
						
							| 132 | 116 131 | fsumcl |  |-  ( ( N e. NN /\ A e. CC /\ B e. CC ) -> sum_ k e. ( 1 ... ( N - 1 ) ) ( ( A ^ k ) x. ( B ^ ( N - k ) ) ) e. CC ) | 
						
							| 133 | 2 105 | expcld |  |-  ( ( N e. NN /\ A e. CC /\ B e. CC ) -> ( A ^ N ) e. CC ) | 
						
							| 134 |  | oveq1 |  |-  ( k = l -> ( k + 1 ) = ( l + 1 ) ) | 
						
							| 135 | 134 | oveq2d |  |-  ( k = l -> ( A ^ ( k + 1 ) ) = ( A ^ ( l + 1 ) ) ) | 
						
							| 136 |  | oveq2 |  |-  ( k = l -> ( N - k ) = ( N - l ) ) | 
						
							| 137 | 136 | oveq1d |  |-  ( k = l -> ( ( N - k ) - 1 ) = ( ( N - l ) - 1 ) ) | 
						
							| 138 | 137 | oveq2d |  |-  ( k = l -> ( B ^ ( ( N - k ) - 1 ) ) = ( B ^ ( ( N - l ) - 1 ) ) ) | 
						
							| 139 | 135 138 | oveq12d |  |-  ( k = l -> ( ( A ^ ( k + 1 ) ) x. ( B ^ ( ( N - k ) - 1 ) ) ) = ( ( A ^ ( l + 1 ) ) x. ( B ^ ( ( N - l ) - 1 ) ) ) ) | 
						
							| 140 | 139 | cbvsumv |  |-  sum_ k e. ( 0 ... ( ( N - 1 ) - 1 ) ) ( ( A ^ ( k + 1 ) ) x. ( B ^ ( ( N - k ) - 1 ) ) ) = sum_ l e. ( 0 ... ( ( N - 1 ) - 1 ) ) ( ( A ^ ( l + 1 ) ) x. ( B ^ ( ( N - l ) - 1 ) ) ) | 
						
							| 141 |  | 1m1e0 |  |-  ( 1 - 1 ) = 0 | 
						
							| 142 | 141 | eqcomi |  |-  0 = ( 1 - 1 ) | 
						
							| 143 | 142 | oveq1i |  |-  ( 0 ... ( ( N - 1 ) - 1 ) ) = ( ( 1 - 1 ) ... ( ( N - 1 ) - 1 ) ) | 
						
							| 144 | 143 | a1i |  |-  ( ( N e. NN /\ A e. CC /\ B e. CC ) -> ( 0 ... ( ( N - 1 ) - 1 ) ) = ( ( 1 - 1 ) ... ( ( N - 1 ) - 1 ) ) ) | 
						
							| 145 | 36 | adantr |  |-  ( ( ( N e. NN /\ A e. CC /\ B e. CC ) /\ l e. ( 0 ... ( ( N - 1 ) - 1 ) ) ) -> N e. CC ) | 
						
							| 146 |  | elfznn0 |  |-  ( l e. ( 0 ... ( ( N - 1 ) - 1 ) ) -> l e. NN0 ) | 
						
							| 147 | 146 | nn0cnd |  |-  ( l e. ( 0 ... ( ( N - 1 ) - 1 ) ) -> l e. CC ) | 
						
							| 148 | 147 | adantl |  |-  ( ( ( N e. NN /\ A e. CC /\ B e. CC ) /\ l e. ( 0 ... ( ( N - 1 ) - 1 ) ) ) -> l e. CC ) | 
						
							| 149 |  | 1cnd |  |-  ( ( ( N e. NN /\ A e. CC /\ B e. CC ) /\ l e. ( 0 ... ( ( N - 1 ) - 1 ) ) ) -> 1 e. CC ) | 
						
							| 150 | 145 148 149 | subsub4d |  |-  ( ( ( N e. NN /\ A e. CC /\ B e. CC ) /\ l e. ( 0 ... ( ( N - 1 ) - 1 ) ) ) -> ( ( N - l ) - 1 ) = ( N - ( l + 1 ) ) ) | 
						
							| 151 | 150 | oveq2d |  |-  ( ( ( N e. NN /\ A e. CC /\ B e. CC ) /\ l e. ( 0 ... ( ( N - 1 ) - 1 ) ) ) -> ( B ^ ( ( N - l ) - 1 ) ) = ( B ^ ( N - ( l + 1 ) ) ) ) | 
						
							| 152 | 151 | oveq2d |  |-  ( ( ( N e. NN /\ A e. CC /\ B e. CC ) /\ l e. ( 0 ... ( ( N - 1 ) - 1 ) ) ) -> ( ( A ^ ( l + 1 ) ) x. ( B ^ ( ( N - l ) - 1 ) ) ) = ( ( A ^ ( l + 1 ) ) x. ( B ^ ( N - ( l + 1 ) ) ) ) ) | 
						
							| 153 | 144 152 | sumeq12dv |  |-  ( ( N e. NN /\ A e. CC /\ B e. CC ) -> sum_ l e. ( 0 ... ( ( N - 1 ) - 1 ) ) ( ( A ^ ( l + 1 ) ) x. ( B ^ ( ( N - l ) - 1 ) ) ) = sum_ l e. ( ( 1 - 1 ) ... ( ( N - 1 ) - 1 ) ) ( ( A ^ ( l + 1 ) ) x. ( B ^ ( N - ( l + 1 ) ) ) ) ) | 
						
							| 154 | 140 153 | eqtrid |  |-  ( ( N e. NN /\ A e. CC /\ B e. CC ) -> sum_ k e. ( 0 ... ( ( N - 1 ) - 1 ) ) ( ( A ^ ( k + 1 ) ) x. ( B ^ ( ( N - k ) - 1 ) ) ) = sum_ l e. ( ( 1 - 1 ) ... ( ( N - 1 ) - 1 ) ) ( ( A ^ ( l + 1 ) ) x. ( B ^ ( N - ( l + 1 ) ) ) ) ) | 
						
							| 155 |  | 1zzd |  |-  ( ( N e. NN /\ A e. CC /\ B e. CC ) -> 1 e. ZZ ) | 
						
							| 156 |  | peano2zm |  |-  ( N e. ZZ -> ( N - 1 ) e. ZZ ) | 
						
							| 157 | 52 156 | syl |  |-  ( ( N e. NN /\ A e. CC /\ B e. CC ) -> ( N - 1 ) e. ZZ ) | 
						
							| 158 |  | oveq2 |  |-  ( k = ( l + 1 ) -> ( A ^ k ) = ( A ^ ( l + 1 ) ) ) | 
						
							| 159 |  | oveq2 |  |-  ( k = ( l + 1 ) -> ( N - k ) = ( N - ( l + 1 ) ) ) | 
						
							| 160 | 159 | oveq2d |  |-  ( k = ( l + 1 ) -> ( B ^ ( N - k ) ) = ( B ^ ( N - ( l + 1 ) ) ) ) | 
						
							| 161 | 158 160 | oveq12d |  |-  ( k = ( l + 1 ) -> ( ( A ^ k ) x. ( B ^ ( N - k ) ) ) = ( ( A ^ ( l + 1 ) ) x. ( B ^ ( N - ( l + 1 ) ) ) ) ) | 
						
							| 162 | 155 155 157 131 161 | fsumshftm |  |-  ( ( N e. NN /\ A e. CC /\ B e. CC ) -> sum_ k e. ( 1 ... ( N - 1 ) ) ( ( A ^ k ) x. ( B ^ ( N - k ) ) ) = sum_ l e. ( ( 1 - 1 ) ... ( ( N - 1 ) - 1 ) ) ( ( A ^ ( l + 1 ) ) x. ( B ^ ( N - ( l + 1 ) ) ) ) ) | 
						
							| 163 | 154 162 | eqtr4d |  |-  ( ( N e. NN /\ A e. CC /\ B e. CC ) -> sum_ k e. ( 0 ... ( ( N - 1 ) - 1 ) ) ( ( A ^ ( k + 1 ) ) x. ( B ^ ( ( N - k ) - 1 ) ) ) = sum_ k e. ( 1 ... ( N - 1 ) ) ( ( A ^ k ) x. ( B ^ ( N - k ) ) ) ) | 
						
							| 164 |  | npcan1 |  |-  ( N e. CC -> ( ( N - 1 ) + 1 ) = N ) | 
						
							| 165 | 36 164 | syl |  |-  ( ( N e. NN /\ A e. CC /\ B e. CC ) -> ( ( N - 1 ) + 1 ) = N ) | 
						
							| 166 | 165 | oveq2d |  |-  ( ( N e. NN /\ A e. CC /\ B e. CC ) -> ( A ^ ( ( N - 1 ) + 1 ) ) = ( A ^ N ) ) | 
						
							| 167 |  | peano2cnm |  |-  ( N e. CC -> ( N - 1 ) e. CC ) | 
						
							| 168 | 35 167 | syl |  |-  ( N e. NN -> ( N - 1 ) e. CC ) | 
						
							| 169 |  | 1cnd |  |-  ( N e. NN -> 1 e. CC ) | 
						
							| 170 | 35 168 169 | sub32d |  |-  ( N e. NN -> ( ( N - ( N - 1 ) ) - 1 ) = ( ( N - 1 ) - ( N - 1 ) ) ) | 
						
							| 171 | 168 | subidd |  |-  ( N e. NN -> ( ( N - 1 ) - ( N - 1 ) ) = 0 ) | 
						
							| 172 | 170 171 | eqtrd |  |-  ( N e. NN -> ( ( N - ( N - 1 ) ) - 1 ) = 0 ) | 
						
							| 173 | 172 | 3ad2ant1 |  |-  ( ( N e. NN /\ A e. CC /\ B e. CC ) -> ( ( N - ( N - 1 ) ) - 1 ) = 0 ) | 
						
							| 174 | 173 | oveq2d |  |-  ( ( N e. NN /\ A e. CC /\ B e. CC ) -> ( B ^ ( ( N - ( N - 1 ) ) - 1 ) ) = ( B ^ 0 ) ) | 
						
							| 175 |  | exp0 |  |-  ( B e. CC -> ( B ^ 0 ) = 1 ) | 
						
							| 176 | 175 | 3ad2ant3 |  |-  ( ( N e. NN /\ A e. CC /\ B e. CC ) -> ( B ^ 0 ) = 1 ) | 
						
							| 177 | 174 176 | eqtrd |  |-  ( ( N e. NN /\ A e. CC /\ B e. CC ) -> ( B ^ ( ( N - ( N - 1 ) ) - 1 ) ) = 1 ) | 
						
							| 178 | 166 177 | oveq12d |  |-  ( ( N e. NN /\ A e. CC /\ B e. CC ) -> ( ( A ^ ( ( N - 1 ) + 1 ) ) x. ( B ^ ( ( N - ( N - 1 ) ) - 1 ) ) ) = ( ( A ^ N ) x. 1 ) ) | 
						
							| 179 | 133 | mulridd |  |-  ( ( N e. NN /\ A e. CC /\ B e. CC ) -> ( ( A ^ N ) x. 1 ) = ( A ^ N ) ) | 
						
							| 180 | 178 179 | eqtrd |  |-  ( ( N e. NN /\ A e. CC /\ B e. CC ) -> ( ( A ^ ( ( N - 1 ) + 1 ) ) x. ( B ^ ( ( N - ( N - 1 ) ) - 1 ) ) ) = ( A ^ N ) ) | 
						
							| 181 | 163 180 | oveq12d |  |-  ( ( N e. NN /\ A e. CC /\ B e. CC ) -> ( sum_ k e. ( 0 ... ( ( N - 1 ) - 1 ) ) ( ( A ^ ( k + 1 ) ) x. ( B ^ ( ( N - k ) - 1 ) ) ) + ( ( A ^ ( ( N - 1 ) + 1 ) ) x. ( B ^ ( ( N - ( N - 1 ) ) - 1 ) ) ) ) = ( sum_ k e. ( 1 ... ( N - 1 ) ) ( ( A ^ k ) x. ( B ^ ( N - k ) ) ) + ( A ^ N ) ) ) | 
						
							| 182 | 132 133 181 | comraddd |  |-  ( ( N e. NN /\ A e. CC /\ B e. CC ) -> ( sum_ k e. ( 0 ... ( ( N - 1 ) - 1 ) ) ( ( A ^ ( k + 1 ) ) x. ( B ^ ( ( N - k ) - 1 ) ) ) + ( ( A ^ ( ( N - 1 ) + 1 ) ) x. ( B ^ ( ( N - ( N - 1 ) ) - 1 ) ) ) ) = ( ( A ^ N ) + sum_ k e. ( 1 ... ( N - 1 ) ) ( ( A ^ k ) x. ( B ^ ( N - k ) ) ) ) ) | 
						
							| 183 | 182 | oveq1d |  |-  ( ( N e. NN /\ A e. CC /\ B e. CC ) -> ( ( sum_ k e. ( 0 ... ( ( N - 1 ) - 1 ) ) ( ( A ^ ( k + 1 ) ) x. ( B ^ ( ( N - k ) - 1 ) ) ) + ( ( A ^ ( ( N - 1 ) + 1 ) ) x. ( B ^ ( ( N - ( N - 1 ) ) - 1 ) ) ) ) - ( ( B ^ N ) + sum_ k e. ( 1 ... ( N - 1 ) ) ( ( A ^ k ) x. ( B ^ ( N - k ) ) ) ) ) = ( ( ( A ^ N ) + sum_ k e. ( 1 ... ( N - 1 ) ) ( ( A ^ k ) x. ( B ^ ( N - k ) ) ) ) - ( ( B ^ N ) + sum_ k e. ( 1 ... ( N - 1 ) ) ( ( A ^ k ) x. ( B ^ ( N - k ) ) ) ) ) ) | 
						
							| 184 | 133 106 132 | pnpcan2d |  |-  ( ( N e. NN /\ A e. CC /\ B e. CC ) -> ( ( ( A ^ N ) + sum_ k e. ( 1 ... ( N - 1 ) ) ( ( A ^ k ) x. ( B ^ ( N - k ) ) ) ) - ( ( B ^ N ) + sum_ k e. ( 1 ... ( N - 1 ) ) ( ( A ^ k ) x. ( B ^ ( N - k ) ) ) ) ) = ( ( A ^ N ) - ( B ^ N ) ) ) | 
						
							| 185 | 115 183 184 | 3eqtrd |  |-  ( ( N e. NN /\ A e. CC /\ B e. CC ) -> ( sum_ k e. ( 0 ..^ N ) ( ( A ^ ( k + 1 ) ) x. ( B ^ ( ( N - k ) - 1 ) ) ) - sum_ k e. ( 0 ..^ N ) ( ( A ^ k ) x. ( B ^ ( N - k ) ) ) ) = ( ( A ^ N ) - ( B ^ N ) ) ) | 
						
							| 186 | 18 50 185 | 3eqtrrd |  |-  ( ( N e. NN /\ A e. CC /\ B e. CC ) -> ( ( A ^ N ) - ( B ^ N ) ) = ( ( A - B ) x. sum_ k e. ( 0 ..^ N ) ( ( A ^ k ) x. ( B ^ ( ( N - k ) - 1 ) ) ) ) ) | 
						
							| 187 | 186 | 3exp |  |-  ( N e. NN -> ( A e. CC -> ( B e. CC -> ( ( A ^ N ) - ( B ^ N ) ) = ( ( A - B ) x. sum_ k e. ( 0 ..^ N ) ( ( A ^ k ) x. ( B ^ ( ( N - k ) - 1 ) ) ) ) ) ) ) | 
						
							| 188 |  | simp2 |  |-  ( ( N = 0 /\ A e. CC /\ B e. CC ) -> A e. CC ) | 
						
							| 189 |  | simp3 |  |-  ( ( N = 0 /\ A e. CC /\ B e. CC ) -> B e. CC ) | 
						
							| 190 | 188 189 | subcld |  |-  ( ( N = 0 /\ A e. CC /\ B e. CC ) -> ( A - B ) e. CC ) | 
						
							| 191 | 190 | mul01d |  |-  ( ( N = 0 /\ A e. CC /\ B e. CC ) -> ( ( A - B ) x. 0 ) = 0 ) | 
						
							| 192 |  | oveq2 |  |-  ( N = 0 -> ( 0 ..^ N ) = ( 0 ..^ 0 ) ) | 
						
							| 193 |  | fzo0 |  |-  ( 0 ..^ 0 ) = (/) | 
						
							| 194 | 192 193 | eqtrdi |  |-  ( N = 0 -> ( 0 ..^ N ) = (/) ) | 
						
							| 195 | 194 | sumeq1d |  |-  ( N = 0 -> sum_ k e. ( 0 ..^ N ) ( ( A ^ k ) x. ( B ^ ( ( N - k ) - 1 ) ) ) = sum_ k e. (/) ( ( A ^ k ) x. ( B ^ ( ( N - k ) - 1 ) ) ) ) | 
						
							| 196 | 195 | 3ad2ant1 |  |-  ( ( N = 0 /\ A e. CC /\ B e. CC ) -> sum_ k e. ( 0 ..^ N ) ( ( A ^ k ) x. ( B ^ ( ( N - k ) - 1 ) ) ) = sum_ k e. (/) ( ( A ^ k ) x. ( B ^ ( ( N - k ) - 1 ) ) ) ) | 
						
							| 197 |  | sum0 |  |-  sum_ k e. (/) ( ( A ^ k ) x. ( B ^ ( ( N - k ) - 1 ) ) ) = 0 | 
						
							| 198 | 196 197 | eqtrdi |  |-  ( ( N = 0 /\ A e. CC /\ B e. CC ) -> sum_ k e. ( 0 ..^ N ) ( ( A ^ k ) x. ( B ^ ( ( N - k ) - 1 ) ) ) = 0 ) | 
						
							| 199 | 198 | oveq2d |  |-  ( ( N = 0 /\ A e. CC /\ B e. CC ) -> ( ( A - B ) x. sum_ k e. ( 0 ..^ N ) ( ( A ^ k ) x. ( B ^ ( ( N - k ) - 1 ) ) ) ) = ( ( A - B ) x. 0 ) ) | 
						
							| 200 |  | oveq2 |  |-  ( N = 0 -> ( A ^ N ) = ( A ^ 0 ) ) | 
						
							| 201 | 200 | 3ad2ant1 |  |-  ( ( N = 0 /\ A e. CC /\ B e. CC ) -> ( A ^ N ) = ( A ^ 0 ) ) | 
						
							| 202 |  | exp0 |  |-  ( A e. CC -> ( A ^ 0 ) = 1 ) | 
						
							| 203 | 202 | 3ad2ant2 |  |-  ( ( N = 0 /\ A e. CC /\ B e. CC ) -> ( A ^ 0 ) = 1 ) | 
						
							| 204 | 201 203 | eqtrd |  |-  ( ( N = 0 /\ A e. CC /\ B e. CC ) -> ( A ^ N ) = 1 ) | 
						
							| 205 |  | oveq2 |  |-  ( N = 0 -> ( B ^ N ) = ( B ^ 0 ) ) | 
						
							| 206 | 205 | 3ad2ant1 |  |-  ( ( N = 0 /\ A e. CC /\ B e. CC ) -> ( B ^ N ) = ( B ^ 0 ) ) | 
						
							| 207 | 175 | 3ad2ant3 |  |-  ( ( N = 0 /\ A e. CC /\ B e. CC ) -> ( B ^ 0 ) = 1 ) | 
						
							| 208 | 206 207 | eqtrd |  |-  ( ( N = 0 /\ A e. CC /\ B e. CC ) -> ( B ^ N ) = 1 ) | 
						
							| 209 | 204 208 | oveq12d |  |-  ( ( N = 0 /\ A e. CC /\ B e. CC ) -> ( ( A ^ N ) - ( B ^ N ) ) = ( 1 - 1 ) ) | 
						
							| 210 | 209 141 | eqtrdi |  |-  ( ( N = 0 /\ A e. CC /\ B e. CC ) -> ( ( A ^ N ) - ( B ^ N ) ) = 0 ) | 
						
							| 211 | 191 199 210 | 3eqtr4rd |  |-  ( ( N = 0 /\ A e. CC /\ B e. CC ) -> ( ( A ^ N ) - ( B ^ N ) ) = ( ( A - B ) x. sum_ k e. ( 0 ..^ N ) ( ( A ^ k ) x. ( B ^ ( ( N - k ) - 1 ) ) ) ) ) | 
						
							| 212 | 211 | 3exp |  |-  ( N = 0 -> ( A e. CC -> ( B e. CC -> ( ( A ^ N ) - ( B ^ N ) ) = ( ( A - B ) x. sum_ k e. ( 0 ..^ N ) ( ( A ^ k ) x. ( B ^ ( ( N - k ) - 1 ) ) ) ) ) ) ) | 
						
							| 213 | 187 212 | jaoi |  |-  ( ( N e. NN \/ N = 0 ) -> ( A e. CC -> ( B e. CC -> ( ( A ^ N ) - ( B ^ N ) ) = ( ( A - B ) x. sum_ k e. ( 0 ..^ N ) ( ( A ^ k ) x. ( B ^ ( ( N - k ) - 1 ) ) ) ) ) ) ) | 
						
							| 214 | 1 213 | sylbi |  |-  ( N e. NN0 -> ( A e. CC -> ( B e. CC -> ( ( A ^ N ) - ( B ^ N ) ) = ( ( A - B ) x. sum_ k e. ( 0 ..^ N ) ( ( A ^ k ) x. ( B ^ ( ( N - k ) - 1 ) ) ) ) ) ) ) | 
						
							| 215 | 214 | 3imp |  |-  ( ( N e. NN0 /\ A e. CC /\ B e. CC ) -> ( ( A ^ N ) - ( B ^ N ) ) = ( ( A - B ) x. sum_ k e. ( 0 ..^ N ) ( ( A ^ k ) x. ( B ^ ( ( N - k ) - 1 ) ) ) ) ) |